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Abstract. We are exploring a mathematical model of a forest ecosystem that is at risk of fire
ignition when the ambient temperature rises. We believe that the main characteristic in this case
is the amount of carbon entering the atmosphere. Fire control measures are an external control
factor that is at the disposal of the Forestry Administration. We were interested in finding the
optimal behavior strategy, with which the Forestry Administration could take the necessary
measures in a timely manner. We describe the forest ecosystem by a differential equation with
two external control factors and apply the theory of differential games to the search for optimal
control. By optimal control we mean the Nash equilibrium that we search for our model.

We also complicate our model by introducing into consideration a differential equation with
four control external factors describing the mosaic-layer phytocenosis.

1. Introduction
As a rule, the stationary equilibrium state of the system, or stationary equilibrium, is stationary
state for which its characterizing parameter x(t) does not change with time, i. e.

dx

dt
= 0.

However, the systems are often controlled by external factors u1, ..., uN , and in fact, their
dynamics is described by the differential equation of the form

dx

dt
= f(t, x, u1, ..., uN ).

In this case, we can consider this equation in the framework of optimal control theory, and
moreover, in the framework of the theory of differential games, and find the so-called Nash
equilibrium.

In the theory of differential games each control factor ui is considered to be in possession of
the player i, who tries to use it to affect the system so to have a maximal winning or minimal
losing. Player’s wining/lossing is described by some given function Ji(x, u1, ..., uN ). Clearly, in
reality, it is difficult to suggest that the factors can be changed completely independently from
each other, and therefore, an equilibrium can be established in the system in a certain sense.

In this case, Nash equilibrium means that if any player is trying to change their management
strategy unilaterally while other players’ policy remains unchanged, he will have the greater loss.
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Forest ecosystem dynamics can also be described by the differential equation with external
control factors. It is natural to try to establish the existence of Nash equilibrium in forest
ecosystems with external control factors.

2. Simple theoretical-catastrophic model
Forest ecosystems in hot weather are at risk of fire ignition. In this article, we model the situation
of the possibility of managing the state of the forest ecosystem through fire prevention measures
in the conditions of the forest fires risk.

A forest fire is characterized by abrupt carbon emissions. The rate of increase in the amount
of carbon in the atmosphere due to its decrease in the ecosystem is proportional to its amount
x(t) in the forest phytocenosis and to a large extent depends on the temperature T exceeding
some critical level T0.

We consider the following theoretical-catastrophic model of forest ecosystem at risk of fire
ignition [1]

dx(t)

dt
= −{[αβx2(t)− (p− p0)]x(t) + (T − T0)}, (1)

or
dx(t)

dt
= − ∂

∂x
V (x, p, T ), (2)

where

V (x, T, p) =
αβ

4
· x4 − 1

2
· (p− p0) · x2 + (T − T0) · x,

and
• α · x(t) (α > 0) is the share of carbon in forest litter, consisting of small branches, bark,

needles, leaves; in forest floor, dry grass; in the living ground cover of grasses, mosses, small
undergrowth and bark in the lower parts of tree trunks that are involved in ground fires;
• β · x(t) (β > 0) is the proportion of carbon in the crowns of trees involved in high fires;
• p is the value that characterizes the level of fire prevention measures taken by the forestry

administrations of the regions, p0 is a critical level for fire prevention measures taken to guarantee
the absence of spontaneous combustion (or even arsons).

In other words, we have a theoretical-catastrophic ignition model, described by an assembly-
type catastrophe. If we consider the stationary equilibria of a forest ecosystem characterized by
solutions x(t) satisfying condition

dx

dt
= 0, or V (x, T, p) = 0, (3)

then when the factors T, p change along a closed trajectory around the point (T0, p0), at
the intersection of the so-called bifurcation set, abrupt changes in the carbon content in the
atmosphere occur. In other words, large carbon emissions, meaning a sharp decrease in the
value of x (forest fire or deforestation), are replaced by a sharp drop in carbon input into
the atomosphere with a corresponding increase in x (a jump in the process of forest recovery
and carbon sequestration is equal to secondary succession after a fire and / or termination of
deforestation).

3. Dynamically equilibrium forest evolution at risk of fire ignition
Equation (1) is a dynamic system controlled by external control factors T and p. In the case
when the control factors do not cross the bifurcation set, the unsteady equilibrium evolution
of the phytocenosis can be observed under the risk of fire ignition. Such an equilibrium is
established with certain dynamically changing external control factors (T, p). For system (1),
as a rule, the optimal in some sense control is considered.
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To find the optimal control of (T ∗, p∗), we use the theory of differential games [2,3], meaning
the Nash equilibrium [2] under the optimal control. Our players are Nature, characterized by
temperature T , and Forestry Administration of the region, carrying out fire prevention activities,
characterized by the factor p.

4. Algorithm for finding Nash equilibria
It is natural to consider a game with a non-zero amount, since the prizes of Nature and the
Forestry Administration of the region are weakly related.

If a player forms ”its” control action in the form of only a function of time u(t) for the entire
duration of the game, then u(t) is the program control of the player. Earlier we called it using
the term ”control”. However, a player can choose his own control depending on the position of
x at the time point t the system is in. In this case, the player constructs a control action in the
form of a function u(t, x), which already depends on the position {t, x}, and for u(t, x) the term
positional control of the player is used [3]. Often they simply write u(x).

We will look for positional control, or Nash positional equilibrium.
For the differential game of N players

dx

dt
= f(x) +

N∑
j=1

gj(x)uj ,

f(0) = 0,

x ∈ IR, uj ∈ IR,

Ji(x, u1, ..., uN ) =

+∞∫
0

[Qi(x) +
N∑
j=1

Rij(uj)
2]dt,

(i = 1, ..., N),

Qi > 0, Rii > 0, Rij ≥ 0,

existence of Nash equilibria

Ji(u
∗
1, u
∗
2, u
∗
i , ..., u

∗
N ) ≤ Ji(u∗1, u∗2, ..., u∗i−1, ui, u∗i+1..., u

∗
N ), (4)

∀ui, i = 1, ..., N,

is reduced to extremely difficult problem of finding a positive definite solution Vi(x) > 0 of the
nonlinear Hamilton-Jacobi equation

(Vi)
′
x(x)f(x) +Qi(x)− 1

2
(Vi)

′
x

N∑
j=1

[gj(x)]2(Rjj)
−1(Vj)

′
x+

+
1

4

N∑
j=1

Rij [gj(x)]2[(Rjj)
−1]2[(Vj)

′
x]2 = 0, (5)

which is used to construct the Nash equilibrium [2] (see Theorem 10.4-2):

u∗i (x) = ui(Vi(x)) = −1

2
Riigi(x)(Vi)

′
x, i = 1, ..., N. (6)
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5. Examples of optimal control
In our case, N = 2, player 1 is the Forestry Administration of the region, player 2 is Nature and

u1 = p− p0, u2 = (T − T0),

f(x) = −αβx3, g1(x) = x, g2(x) = −1,

for R11 = R22 = 1, R12 = R21 = 0 the Hamilton-Jacobi equations are:

Q1 + (V1)
′
xf(x)− 1

4
[g1(x)]2[(V1)

′
x]2 − 1

2
[g2(x)]2(V1)

′
x(V2)

′
x = 0,

Q2 + (V2)
′
xf(x)− 1

4
[g2(x)]2[(V2)

′
x]2 − 1

2
[g1(x)]2(V1)

′
x(V2)

′
x = 0.

Assuming that

V1(x) = V2(x) =
1

2
x2,

we obtain the Hamilton-Jacobi equations in the form

Q1 − αβx4 −
1

4
x4 − 1

2
x2 = 0,

Q2 − αβx4 −
1

4
x2 − 1

2
x4 = 0.

Hence,

Q1 = (αβ +
1

4
)x4 +

1

2
x2 > 0,

Q2 = (αβ +
1

2
)x4 +

1

4
x2 > 0.

These functions are positively defined.
Therefore, by Theorem 10.4-2 of [2], we have the Nash equilibrium

p∗ = p0 −
1

2
x2, T ∗ = T0 +

1

2
x, (7)

found by the formulas (6).
Winning functions are

J1(x, p, τ) =

+∞∫
0

[Q1(x) + (p− p0)2]dt,

J2(x, p, τ) =

+∞∫
0

[Q2(x) + (T − T0)2]dt.

Thus, the Nash equilibrium, and the optimal decisions made by the Forestry Administration are
achieved if this decision at the temperature of T ∗ should correspond to the implementation of
fire prevention measures described by the parameter p∗.

Note that if the fire ignition occurred (T > T0) at the time t, then by the time t + ∆t the
amount of carbon in the phytocenosis will decrease: x(t) > x(t + ∆t). But then from (7) we
have:
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p∗(t+ ∆t)− p∗(t) =
1

2
[x2(t)− x2(t+ ∆t)] =

1

2
[x(t)− x(t+ ∆t)][x(t) + x(t+ ∆t)] > 0.

and

T ∗(t+ ∆t)− T ∗(t) =
1

2
[x(t+ ∆t)− x(t)] < 0.

The first inequality shows the intensification of the fight against fire after the forest caught fire,
and the second shows the decrease in temperature. This indicates a successful fire fighting – a
fire is conquered. In other words, the strategy (T ∗, p∗) obviously demonstrates its success and,
therefore, is justifiably called optimal.

Conducting differential games and calculating equilibria is useful from the point of view of
determining the degree of reliability of the system under study. Equilibria are established if
the system is able to resist. If there are many equilibria, then the Forestry Administration has
at its disposal a range of resistance thresholds – fire prevention measures consisting of pairs
(T ∗, p∗), giving estimated characteristics of a possible set of fire prevention measures p∗, as well
as temperatures T ∗, allowing us to judge the degree of success of fire prevention measures taken.

The various strategies we are talking about can be obtained by taking, for example,

V1(x) = V2(x) =
1

2m
x2m, m ≥ 1.

In this case,

Q1 = αβx2m+2 +
1

4
x4m +

1

2
x4m−2 > 0,

Q2 = αβx2m+2 +
1

4
x4m−2 +

1

2
x4m > 0.

and a series of optimal Nash equilibria has the form:

p∗ = p0 −
1

2
x2m, T ∗ = T0 +

1

2
x2m−1, m = 1, 2, ...

6. Model of 4-layered mosaic forest
The disadvantage of the considered forest ecosystem model is an overly simplified equation with
which we described the forest ecosystem. Let us study the problem of optimal control of forest
ecosystems, bearing in mind the risks of forest fires, in the case of a more realistic mathematical
model of forest ecosystem.

The forest ecosystem is controlled by many external factors. We consider such external control
factors of forest communities as a mosaic state m, interspecific and intraspecific competition k,
the anthropogenic impact a and soil moisture w.

In [4] was offered the next model of 4-layered mosaic forest communities, characterized by
productivity x:

dx

dt
= − ∂

∂x
V (x, k,m, a, w), (8)

where
V (x, k,m, a, w) =

=
α

6
x6 + kx4 +mx3 + ax2 + wx, (9)

α = α1α2α3α4 = const > 0 are tiers of forest.

In [4] a stationary equilibria of this ecosystem is completely studied in detail.
Below we examine Nash equilibria and find them for a 4-layered mosaic forest ecosystem.
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7. Stationary equilibria of layer-mosaic forest
We find stationary equilibria x = x(k,m, a,m) of layer-mosaic forest by solving the equation

∂

∂x
V (x, k,m, a, w) = 0. (10)

Consider the set

MV = {(x, k,m, a, w) :
∂

∂x
V =

= 6x5 + 4kx3 + 3mx2 + 2ax+ w = 0},

which consists of maxima, minima and points of inflection of function V(k,m,a,w)(x) =
V (x, k,m, a, w). All these points are stationary equilibria of given forest ecosystem.

We can change the factors (k,m, a, w) and get different stationary equilibria. In some cases,
the transition from one equilibrium to another is the jump x(k,m, a, w)→ (k′,m′, a′, w′), which
is called butterfly catastrophe.

The behavior of the forest ecosystem in such catastrophes is investigated in [4].
We shall study behavior of the forest ecosystem under the Nash equilibria.

8. Nash equilibrium of the forest ecosystem
In our case N = 4, player 1 is competition of trees u1 = k, player 2 is mosaic factor u2 = m,
player 3 is anthropogenic interference u3 = a in the forest ecosystem (deforestation, fires, and
so on), and, finally, player 4 is soil moisture u4 = w.

Further,
f(x) = −αx5, g1(x) = −4x3,

g2(x) = −3x2 g3(x) = −2x, g4(x) = −1

and we take
R11 = R22 = R33 = R44 = 1, Rij = 0 (i 6= j).

The Hamilton-Jacobi equations are:

Qi + (Vi)
′
xf(x)− 1

2
(Vi)

′
xF (x) +

1

4
[gi(x)]2[(Vi)

′
x]2 = 0 (11)

(i = 1, 2, 3, 4),

where

F (x) =
4∑

j=1

[gi(x)]2(Vi)
′
x.

Assuming that

V1(x) = V2(x) = V3(x) = V4(x) =
1

2
x2 > 0,

we obtain the Hamilton-Jacobi equations in the form

Q1 = αx6 + 4x8 + 9
2x

6 + 2x4 + 1
2x

2,

Q2 = αx6 + 8x8 + 4
9x

6 + 2x4 + 1
2x

2,

Q3 = αx6 + 8x8 + 9
2x

6 + x4 + 1
2x

2,

Q4 = αx6 + 8x8 + 9
2x

6 + 2x4 + 1
4x

2.

Since all functions Qi are positive definite, then the Hamilton-Jacobi equations are held for those
features and for functions Vi that were selected above.
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Therefore by Theorem 10.4-2 of [2] we have a Nash equilibrium

k∗ = 2x4, m∗ =
3

2
x3, a∗ = x2, w∗ =

1

2
x, (12)

found by the formulas (6).
What happens if we adopt this strategy of behavior?
Ignition is possible if drought is observed, i.e. the humidity of w falls on the time interval

[t, t + ∆t]. In the time perspective, this is accompanied by a decrease in phytocenosis
productivity: x(t) > x(t+ ∆t). But then from (12) we have:

a∗(t+ ∆t)− a∗(t) = x2(t+ ∆t)− x2(t) = [x(t+ ∆)− x(t)t)][x(t+ ∆t) + x(t)] < 0

where

w∗(t+ ∆t)− w∗(t) =
1

2
[x(t+ ∆t)− x(t)] < 0.

m∗(t+ ∆t)−m∗(t) =
1

3
[x(t+ ∆t)− x(t)][x2(t+ ∆t) + x(t+ ∆t)x(t) + x2(t)] < 0.

In other words, the mosaic m is characterized by the dispersion coefficient ≥ 1; its reduction
suggests that a random distribution of trees will be observed [5], i.e. again a sign of fire (or
other disaster).

The lack of moisture is characterized by the inequality w < 0, the excess – by w > 0. We
have

w∗(t+ ∆t)] < [w∗(t)] < 0

i.e. this is what we should have expected in case of a fire hazard; on a cinder the soil moisture
will not increase.

The first inequality shows a weakening of the anthropogenic impact on the forest, i.e. shows
the lack of a proper fire fighting after the forest ignites. In other words, the strategy m∗, a∗, w∗

corresponds to the intuitive notion of a burning (smoldering) forest.
We have the following winning / losing functions:

J1(x, k,m, a, w) =

+∞∫
0

[Q1(x) + k2]dt,

J2(x, k,m, a, w) =

+∞∫
0

[Q2(x) +m2]dt,

J3(x, k,m, a, w) =

+∞∫
0

[Q3(x) + a2]dt,

J4(x, k,m, a, w) =

+∞∫
0

[Q4(x) + w2]dt,

9. Conclusion
We have shown that it is possible to apply the theory of differential games to the study of forest
ecosystems. We have shown that in such ecosystem there exist the Nash equilibria that are
established in the system when some defined mediated connection between the external factors
affecting on the productivity of the forest is reached.
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As further research, it is necessary and useful to determine which forests and in which cases
are in Nash equilibrium, and how it is expressed in terms of the traditional science of forests
and forest ecosystems.

We have shown that it is possible to establish a Nash equilibrium between Nature and the
Forestry Administration, the ideology of which is that each side counts with the other. Of
course, it is difficult to hope that Nature adheres to humane psychology, but we need to take
into account that its attacks, if they are long or largely destructive, contribute to the success of
the response from the victim.
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