

А. К. Гуц, Хроногеометрия многообразий Геделя и де Ситтера,

Сиб. матем. экурн., 1980, том 21, номер 4, 38–44

https://www.mathnet.ru/smj3749

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

https://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 80.249.207.97

15 апреля 2025 г., 19:16:43

УДК 513.813: 531.18

А. К. ГУЦ

ХРОНОГЕОМЕТРИЯ МНОГООБРАЗИЙ ГЕДЕЛЯ И ДЕ СИТТЕРА

Мы рассматриваем четырехмерное элементарное, т. е. диффеоморфное евклидову пространству R^4 , лоренцево многообразие V^4 . Следовательно, на V^4 можно ввести глобальные координаты x^0 , x^1 , x^2 , x^3 , в которых лоренцева метрика g задается дифференциальной формой

$$ds^2 = \sum_{i,k=0}^{3} g_{ik}(x^0, x^1, x^2, x^3) dx^i dx^k.$$

Под изотронным конусом \widetilde{C}_{x_0} в точке $x_0 \in V^4$ понимается конус, лежащий в касательном пространстве $V^4_{x_0}$ к V^4 в точке x_0 , каждый вектор ξ которого удовлетворяет уравнению

$$g_{x_0}(\xi,\,\xi)=0,$$

или в координатах:

$$\sum_{i,k=0}^{3} g_{ik} \left(x_{0}^{0}, x_{0}^{1}, x_{0}^{2}, x_{0}^{3} \right) \xi^{i} \xi^{k} = 0.$$

где $x_0 = (x_0^0, x_0^1, x_0^2, x_0^3).$

Конусу \widetilde{C}_{x_0} сопоставим подмножество C_{x_0} многообразия V^4 следующим образом: точка $x \in C_{x_0}$ тогда и только тогда, когда она удовлетворяет уравнению

$$\sum_{i,k=0}^{3} g_{ik} \left(x_0^0, x_0^1, x_0^2, x_0^3 \right) \left(x^i - x_0^i \right) \left(x^h - x_0^h \right) = 0.$$

Если x^0 , x^1 , x^2 , x^3 рассматривать как аффинные координаты, то C_x — конус в V^4 . Пусть $f:V^4 \longrightarrow V^4$ — произвольное дифференцируемое отображение. Мы говорим, что f сохраняет семейство $\{C_x: x \in V^4\}$, если выполняется условие

 $f(C_x) = C_{f(x)}. (1)$

Нетрудно проверить, что в этом случае дифференциал df отображения f сохраняет изотропные конусы C_x , т. е.

$$(df)_x(C_x) = C_{f(x)}. (2)$$

Обратное утверждение, вообще говоря, неверно. Но если f в координатах x^0 , x^1 , x^2 , x^3 задается аффинным преобразованием (аффиннизируемо), то равенство (2) влечет равенство (1).

Легко убедиться, что справедлива

 Π емма. Если $G_r - r$ -параметрическая группа движений многообразия (V^4, g) , аффинно представимая в координатах x^0, x^1, x^2, x^3 (r. e.

каждое движение $\varphi \in G_r$ аффиннизируемо), то равенства (1) и (2) эквивалентны для любого движения $\varphi \in G_r$.

Стандартная задача хроногеометрии состоит в определении отображения $f: V^4 \longrightarrow V^4$, удовлетворяющего условию вида (1). Причем не предполагается дифференцируемость f, а часто отказываются и от требования непрерывности. Знание группы движения лоренцева многообразия позволяет установить его геометрию. Интересно решить и обратную задачу: определить группу движений, заранее не предполагая дифференцируемости ее преобразований (обычный путь, ведущий к понятию вектора Киллинга) и имея дело только с изотронными конусами, а точнее, с «конусами» C_x , т. е. спрашивается: можно ли восстановить группу движений G_r многообразия V^4 , предполагая, что каждое преобразование $\phi \subseteq G_r$ удовлетворяет условию (1).

Лемма показывает. что такой подход оправдывается, по крайней мере, для групп движений, допускающих аффинное представление. Например, таковы разрешимые группы движений G_3 , действующие транзитивно на V^3 (см. $(^1)$, с. 263).

Определение. Пусть группа движений G_r аффинизируема в координатах $\{x^i\}$. В этом случае под отображением, сохраняющим изотропные конусы, будем понимать биекцию $f: V^4 \longrightarrow V^4$, удовлетворяющую усвию (1). Имеет место

Теорема А (А. Д. Александров, В. В. Овчинникова (2)).

Любое отображение, сохраняющее изотропные конусы в мире Мин-ковского:

$$ds^2 = dx^{0^2} - dx^{1^2} - dx^{2^2} - dx^{3^2},$$

является суперпозицией неоднородного преобразования Лоренца, т. е. движения, и подобия.

Сформулируем основные результаты статьи.

 $\hat{T} \in \hat{O}$ рема 1. Любое гомеоморфное отображение вселенной Γ ёделя (3,4):

$$ds^2 = a^2 \Big(dx^{0^2} - dx^{1^2} - \frac{1}{2} e^{2x^1} dx^{2^2} - dx^{3^2} + 2e^{x^1} dx^0 dx^2 \Big),$$

$$\bar{x}_0 = x^0 + \alpha; \ \bar{x}^1 = x_1 + \beta; \ \bar{x}^2 = x^2 e^{-\beta} + \gamma; \ \bar{x}^3 = x^3 + \delta,$$
 (3)

где α , β , γ , δ — параметры. Причем эта группа действует просто транзитивно на V^4 .

Теорема 2. Любое гомеоморфное отображение вселенной де Currepa (3):

$$ds^2 = dx^{0^2} - e^{hx^0} (dx^{1^2} + dx^{2^2} + dx^{3^2}),$$

где k = const, сохраняющее изотропные конусы, является движением (5). Группа движений вселенной де Ситтера G_7 в координатах $\{x^i\}$ не представляется подгруппой группы аффинных преобразований.

В координатах

$$y^0 = \exp(-kx^0), \ y^\alpha = kx^\alpha \ (\alpha = 1, 2, 3)$$
 (4)

метрика вселенной де Ситтера принимает следующую форму:

$$ds^{2} = \left(\frac{1}{ky^{0}}\right)^{2} \left(dy^{0^{2}} - dy^{1^{2}} - dy^{2^{2}} - dy^{3^{2}}\right),\tag{5}$$

а группа G_7 состоит из преобразований вида

$$f(y) = \lambda \begin{pmatrix} 1, 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \boxed{U} \end{pmatrix} y + \begin{pmatrix} 0 \\ \alpha \\ \beta \\ \gamma \end{pmatrix}, \quad \lambda > 0,$$

где U — ортогональная матрица, т. е. G_7 аффиннизируется в коорди-

натах $\{y^i\}$.

Группа G_7 содержит просто транзитивную подгруппу G_4 VI₁, которая аффиннизируется в координатах (4). Поэтому конусы C_x во вселенных Гёделя и де Ситтера получаются «разносом» конуса C_{x_0} , где x_0 — фиксированная точка, с помощью некоммутативной группы G_4 VI₁, в отличие от мира Минковского, где «разнос» осуществляется с помощью коммутативной группы сдвигов.

Геометрия мира Минковского плоская, вселенная де Ситтера имеет постоянную кривизну, а вселенная Гёделя существенно искривленная.

С точки зрения теории относительности теоремы A, 1 и 2 говорят о том, что геометрию Минковского, Гёделя и де Ситтера можно определить, зная лишь законы распространения света.

Пусть

$$\begin{split} K_{x}^{+} &= \left\{ u \in V^{4} : u^{0} > 0, \quad \sum_{i,h=0}^{3} g_{ih}\left(x\right)\left(u^{i} - x^{i}\right)\left(u^{h} - x^{h}\right) > 0 \right\} \cup \{x\}, \\ K_{x}^{-} &= \left\{ u \in V^{4} : u^{0} < 0, \quad \sum_{i,h=0}^{3} g_{ih}\left(x\right)\left(u^{i} - x^{i}\right)\left(u^{h} - x^{h}\right) > 0 \right\} \cup \{x\}. \end{split}$$

Тогда справедлива

Теорема 3. Множества вида $K_x^+ \cap K_y^-$, где $x \in K_y^- u$ x, y—произвольные точки, образуют базу топологии вселенных Гёделя и де Ситгера.

Доказательство теоремы 3 по существу не отличается от доказательства аналогичного результата для мира Минковского (6). Причем в слу-

чае вселенной де Ситтера надо перейти к координатам (4).

Семейство множеств $\{K_x^+:x \in V^4\}$ в случае вселенной де Ситтера задает порядок в смысле статьи (7). В (7) показано, что любое отображение, сохраняющее этот порядок, будет движением. Аналогичного порядка во вселенной Гёделя не существует.

1. Доказательство теоремы 1. Итак, конус C_z задается уравнением

$$\sum_{i,b=0}^{3} g_{ik}(z) (x^{i} - z^{i}) (x^{k} - z^{k}) = 0$$

или

$$(x^{0} - z^{0})^{2} - (x^{1} - z^{1})^{2} - \frac{1}{2}e^{2z^{1}}(x^{2} - z^{2})^{2} - (x^{3} - z^{3})^{2} + 2e^{z^{1}}(x^{0} - z^{0})(x^{2} - z^{2}) = 0,$$
(6)

где (z^0, z^1, z^2, z^3) — координаты точки z.

Далее мы отождествляем V^4 с R^4 . Обозначим через $H^2(a)$ гиперплоскость в R^4 , определяемую уравнением $x^2=a=\mathrm{const.}$ В каждой гиперплоскости $H^2\left(z_0^2\right)$ имеем семейство конусов:

$$S\left(z^{0},\,z^{1},\,z^{3}\right)=\{\left(x^{0},\,x^{1},\,z_{0}^{2},\,x^{3}\right)\in R^{4}:\left(x^{0}-z^{0}\right)^{2}-\left(x^{1}-z^{1}\right)^{2}-\left(x^{3}-z^{3}\right)^{2}=0\},$$

где $z \in H^2(z_0^2)$. Мы можем выбрать на конусе $S\left(z_0^0,\, z_0^1,\, z_0^3\right),\, z_0 \in H^2\left(z_0^2\right)$, четыре прямых в общем положении (т. е. никакие три не лежат в одной двумерной плоскости) $l_{z_0}^A$ ($A=1,\,2,\,3,\,4$). Пусть $z \in H^2\left(z_0^2\right)$ и t сдвиг такой, что $t(z_0)=z$. Положим $l_z^A=t\left(l_{z_0}^A\right)$ ($A=1,\,2,\,3,\,4$). Имеем в $H^2\left(z_0^2\right)$ четыре семейства параллельных прямых $\{l_z^A\}$ ($A=1,\,2,\,3,\,4$). В силу равенства (1) и

$$S(u^0, u^1, u^3) \cap S(z^0, z^1, z^3) = l_u^A = l_z^A = C_u \cap C_z, \quad z \in l_u^A,$$

мы убеждаемся, что $f\left(l_z^A\right)$ является прямой в R^4 . Далее, легко проверить, что параллельные прямые l_z^A и $l_u^A (z \neq u)$ отображаются на параллельные прямые и двумерная плоскость, натянутая на каждую пару прямых $\{l_z^A, l_z^B\}$, $A \neq B$, отображается на двумерную плоскость. Отсюда следует, что прямые $f\left(l_z^A\right) (A=1, 2, 3, 4)$ находятся в общем положении и $f\left(H^2\left(z_0^2\right)\right)$ является гиперплоскостью (см. (2)).

Пусть
$$D_z=igcup_{A=1}^4 l_z^A, \quad D_{f(z)}'=igcup_{A=1}^4 f\left(l_z^A
ight).$$
 Тогда $f\left(D_z
ight)=D_{f(z)}'$

и, следовательно, f аффинно на $H^2\left(z_0^2\right)$ в силу теоремы 1 из (8). Рассмотрим теперь двумерную плоскость

$$P(ab) = \{x \in R^4 : x^1 = a, \ x^3 = b\},\$$

где $a,\ b$ произвольные константы. На плоскости $P\left(z_0^1z_0^3\right)$ имеем семейство 1-конусов:

$$\begin{split} F\left(z^{0},\,z^{2}\right) &= \left\{ \left(x^{0},\,z^{1}_{0},\,x^{2},\,z^{3}_{0}\right) \in R^{4} : \left(x^{0}-z^{0}\right)^{2} - \frac{1}{2}\,e^{2z^{1}}\left(x^{2}-z^{2}\right)^{2} + \right. \\ &+ 2e^{z^{1}}\left(x^{0}-z^{0}\right)\left(x^{2}-z^{2}\right) = 0 \right\}, \quad z \in P\left(z^{1}_{0}z^{3}_{0}\right). \end{split}$$

Эта пара пересекающихся в точке (z^0, z_0^1, z^2, z_0^3) прямых, лежащих в $P\left(z_0^1z_0^3\right)$. Обозначим эти прямые через l_z^5, l_z^6 , где $z=(z^0, z_0^1, z^2, z_0^3)$ \in $P\left(z_0^1z_0^3\right)$. Получаем в плоскости $P\left(z_0^1z_0^3\right)$ два семейства параллельных прямых. Так как $l_z^B = l_u^B = F\left(z^0, z^2\right) \cap F\left(u^0, u^2\right) \subset C_u \cap C_z, \ z \in l_u^B (B=5,6)$, то $f\left(l_z^B\right)(B=5,6)$ есть прямая. Следовательно, $f\left[P\left(z_0^1z_0^3\right)\right]$ — двумерная плоскость. Плоскость $P\left(z_0^1z_0^3\right)$ пересекает гиперплоскость $H^2(a)$ по прямой $l_{(z_0^0,z_0^1,a,z_0^3)}^7$. Поскольку для любого a образ $f(H^2(a))$ есть, очевидно, гиперплоскость, причем $f(H^2(a))$ параллельна $f(H^2(a'))$ ($a\neq a'$), то на плоскости $P\left(z_0^1z_0^3\right)$ получаем третье семейство параллельных прямых $\left(l_z^7:z\in P\left(z_0^1z_0^3\right)\right)$. Итак, f отображает $P\left(z_0^1z_0^3\right)$ на плоскость, а три семейства параллельных прямых $\left\{l_z^A:z\in P\left(z_0^1z_0^3\right)\right\}$ (A=5,6,7) — на аналогичное семейство. Значит, f аффинно на $P\left(z_0^1z_0^3\right)$ (8).

Пусть $z_0 \in R^4$ и $L_{z_0}^A$ ($A=1,\ 2,\ 3,\ 4$) — различные прямые, такие, что $L_{z_0}^B \subset H^2(z_0^2)$ ($B=1,\ 2,\ 3$), $L_{z_0}^3$, $L_{z_0}^4 \subset P(z_0^1 z_0^3)$. Существует аффинное преобразование $g\colon R^4$ на R^4 , обладающее следующими свойствами:

$$g(f(z_0)) = z_0, \quad g(f(L_{z_0}^A)) = L_{z_0}^A \quad (A = 1, 2, 3, 4).$$

Тогда отображение $g\circ f$ отображает $H^2\left(z_0^2\right)$ аффинно на $H^2\left(z_0^2\right)$ и $P\left(z_0^1z_0^3\right)$ аффинно на $P\left(z_0^1z_0^3\right)$ и $(g\circ f)\left(L_{z_0}^A\right)=L_{z_0}^A$ $(A=1,\ 2,\ 3,\ 4)$. Выбирая прямые $L_{z_0}^A$ $(A=1,\ 2,\ 3,\ 4)$ в качестве новых осей координат, убеждаемся, что в этих координатах $g\circ f$ задается аффинным преобразованием. Следовательно, f — аффинно отображает R^4 на R^4 , т. е.

$$f^{i}(x) = \sum_{k=0}^{3} a_{k}^{i} x^{k} + a^{i} \qquad (i = 0, 1, 2, 3).$$
 (7)

Поскольку выполняется равенство

$$f(C_z) = C_{f(z)},$$

то должны иметь наравне с (6):

$$[f^{0}(x) - f^{0}(z)]^{2} - [f^{1}(x) - f^{1}(z)]^{2} - \frac{1}{2}e^{2f^{1}(z)}[f^{2}(x) - f^{2}(z)]^{2} - [f^{3}(x) - f^{3}(z)]^{2} + 2e^{f^{1}(z)}[f^{0}(x) - f^{0}(z)][f^{2}(x) - f^{2}(z)] = 0.$$
(8)

Из (7), (8) получаем

$$\left[(a_0^0)^2 - (a_0^1)^2 - \frac{(a_0^2)^2}{2} \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) - (a_0^3)^2 + \right. \\ + 2a_0^0 a_0^2 \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] (x^0 - z^0)^2 - \\ - \left[- (a_1^0)^2 + (a_1^1)^2 + \frac{(a_1^2)^2}{2} \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) + (a_1^3)^2 - \right. \\ - \left. - 2a_1^0 a_1^2 \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] (x^1 - z^1)^2 - \\ - \left[- (a_2^0)^2 + (a_2^1)^2 + \frac{(a_2^2)^2}{2} \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) + (a_2^3)^2 - \right. \\ - \left. - 2a_2^0 a_2^2 \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] (x^2 - z^2)^2 - \\ - \left[- (a_3^0)^2 + (a_3^1)^2 + \frac{(a_3^2)^2}{2} \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) + (a_3^3)^2 - \right. \\ - \left. - 2a_0^0 a_2^3 \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] (x^3 - z^3)^2 + \\ + \left. \left. \left[2a_0^0 a_2^0 - 2a_0^1 a_2^1 - a_0^2 a_2^2 \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) - 2a_0^3 a_2^3 + \right. \\ + \left. 2(a_0^0 a_1^2 - a_0^2 a_0^2) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] (x^0 - z^0) (x^2 - z^2) + \\ + \left. \left[2a_0^0 a_1^0 - 2a_0^1 a_1^1 - a_0^2 a_1^2 \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) - 2a_0^3 a_1^3 + \right. \\ + \left. 2\left(a_0^0 a_1^2 + a_1^0 a_0^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] (x^0 - z^0) (x^1 - z^1) + \right.$$

$$+ \left[2a_0^0 a_3^0 - 2a_0^1 a_3^1 - a_0^2 a_3^2 \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) - 2a_0^3 a_3^3 + \right.$$

$$+ 2\left(a_0^0 a_3^2 + a_3^0 a_0^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \left] \left(x^0 - z^0\right) \left(x^3 - z^3\right) + \right.$$

$$+ \left[2a_1^0 a_2^0 - 2a_1^1 a_2^1 - a_1^2 a_2^2 \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) - 2a_1^3 a_2^3 + \right.$$

$$+ 2\left(a_1^0 a_2^2 + a_3^0 a_1^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] \left(x^1 - z^1\right) \left(x^2 - z^2\right) + \right.$$

$$+ \left[2a_1^0 a_3^0 - 2a_1^1 a_3^1 - a_1^2 a_3^2 \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) - 2a_1^3 a_3^3 + \right.$$

$$+ 2\left(a_1^0 a_3^2 + a_3^0 a_1^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] \left(x^1 - z^1\right) \left(x^3 - z^3\right) + \right.$$

$$+ \left[2a_2^0 a_3^0 - 2a_2^1 a_3^1 - a_2^2 a_3^2 \exp\left(2\sum_{k=0}^3 a_k^1 z^k + 2a^1\right) - 2a_2^3 a_3^3 + \right.$$

$$+ 2\left(a_2^0 a_3^2 + a_3^0 a_2^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] \left(x^2 - z^2\right) \left(x^3 - z^3\right) = 0$$

$$+ 2\left(a_2^0 a_3^2 + a_3^0 a_2^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] \left(x^2 - z^2\right) \left(x^3 - z^3\right) = 0$$

$$+ 2\left(a_2^0 a_3^2 + a_3^0 a_2^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] \left(x^2 - z^2\right) \left(x^3 - z^3\right) = 0$$

$$+ 2\left(a_2^0 a_3^2 + a_3^0 a_2^2\right) \exp\left(\sum_{k=0}^3 a_k^1 z^k + a^1\right) \right] \left(x^2 - z^2\right) \left(x^3 - z^3\right) = 0$$

Сравнивая (9) и (6), получаем 1)

$$a_0^1 = a_2^1 = a_3^1 = 0, \quad a_0^2 = a_1^2 = a_2^0 = a_3^2 = 0,$$

 $a_3^0 = a_1^0 = a_2^3 a_3^3 = a_1^3 a_3^3 = a_1^3 a_2^3 = a_0^3 a_3^3 = 0,$ (10)

$$(a_0^0)^2 - (a_0^3)^2 = 1, \quad (a_1^1)^2 + (a_1^3)^2 = 1, \quad (a_3^3)^2 = 1.$$
 (11)

Из (10) и (11) получаем

$$a_1^3 = a_2^3 = a_0^3 = 0.$$

Следовательно,

$$egin{aligned} (a_0^0)^2 &= (a_1^1)^2 = (a_3^3)^2 = 1, \ (a_2^2)^2 \exp 2a^1 = 1, \ a_0^0 a_2^2 \exp a^1 = 1. \end{aligned}$$

Нетрудно видеть, что $a_1^1 = 1$.

Оставляя в стороне отражения: $x^A \to -x^A$ ($A=0,\ 2,\ 3$), получаем

$$a_0^0 = a_1^1 = a_3^3 = 1, \ a_2^2 = e^{-a_1},$$

т. е. получили преобразование вида (3). Значит, f — движение **Т**еорема 1 доказана.

2. Доказательство теоремы 2.

В координатах (4) метрика вселенной де Ситтера записывается в виде (5). Следовательно, V^4 отождествляется с полупространством $\{y \in \mathbb{R}^4: y^\circ > 0\}$, а конусы C_z задаются уравнением

$$(y^0 - z^0)^2 - (y^1 - z^1)^2 - (y^2 - z^2)^2 - (y^3 - z^3)^2 = 0.$$

¹ Конформные преобразования вида (7) все тривиальны, т. е. сводятся к движениям.

В работе ((9), теорема 2) показано, что в этом случае отображение, сохраняющее изотропные конусы, можно записать в виде:

$$f(y) = \lambda \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & \boxed{U} \end{pmatrix} y + \begin{pmatrix} 0 \\ \alpha \\ \beta \\ \gamma \end{pmatrix},$$

где U — ортогональная матрица, $\lambda > 0$, α , β , γ — параметры. Все эти преобразования образуют 7-параметрическую группу G_7 , которая, как легко видеть, есть группа движений вселенной де Ситтера. Теорема 2 доказана.

Омск, Омский государственный университет

Статья поступила 10 декабря 1978 г.

ЛИТЕРАТУРА

¹ Петров А. З. Пространства Эйнштейна. М. ФМ. 1961.

Петров А. Б. пространства бинштенна. М. Фм. 1901.
 Александров А. Д., Овчинникова В. В. Замечания к основам теории относительности.— Вестник Ленинград. ун-та, 1953, вып. 11, с. 95—100.
 Синг Дж. Общая теория относительности. М., ИЛ., 1963.
 Gödel K. An Example of a New Type of Cosmological Solutions of Einstein's Fields Equations of Gravitation.— Rev. of Mod. Phys., 1949, v. 21, № 3, p. 447.
 Гуц А. К. Об отображениях семейств множеств.— Докл. АН СССР, 1973, т. 209, № 4,

c. 773-774.

C. 173—174.
 Cezar Gheorghe, Eleonora Mihul. Causal Group of Space — Time. — Comm. math. Phys., 1969, v. 14, № 2, p. 165—170.
 Fyų A. К. Отображения упорядоченного пространства Лобачевского. — Докл. АН СССР, 1974, т. 215, № 1, с. 35—37.
 Fyų A. К. Об отображениях семейств множеств в гильбертовом пространстве. —

Известия ВУЗов. Матем. 1975, № 3, с. 23—29.

⁹ Гуц А. К. Об отображениях, сохраняющих конусы в пространстве Лобачевского.— Математич. заметки, 1973, т. 13, № 5, с. 687—694.