Since T? is complete and recursively axiomatizable, by a theorem of Janiczak [5] it is
decidable.

The author thanks Yu. L. Ershov for his valuable advice in the completion of this paper.
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MAPPINGS OF AN ORDERED LOBACHEVSKII SPACE

A. K. Guts UDC 513.812

We consider n-dimensional Lobachevskii space LB, n = 2 in which there is given an
ordering, which is invariant with respect to some simple transitive subgroup T of the group
of motions. We pose the problem of the complete description of isotonic homecmorphisms
f: L% > L0 (i.e., f and £f~' aremonotonic). In Euclidean space the analogous problem is
solved in A. D. Aleksandrov [1].

The results of the paper were announced in [2].

1. Definitions and Notation

(1.1). Geometrically, the introduction of an order in L is the assignment to each
point x &. L" of a set Py ¢ L? satisfying the conditions: 1) x & Py; 2) if y & Py, then
Py c Py; 3) for x # y we have Py # Py. Then writing the relation y & Py as x < y we get
a partial ordering in LT,

The invariance of the order with respect to the group T is understood as follows: If
t & T, then t(Py) = Py(x) for any point re L,

In IM we fix a point e, and if M is any set in LT containing the point e, then My de-
notes the set obtained from M with the help of the motion t & T, carrying e into the point x.

A bijective map f£: LM » LN of the ordered set LT is said to be isotonic, if for any
point we have £(Py) = Pg(x)- It is easy to verify that a bijection f is isotonic if and only
if f and £~ are monotonic; i.e., if x <.y, then Hey<sHy) and Y (z)<fY(y).

(1.2). Let %y, ..., Xp be rectangular Cartesian coordinates in the Euclidean space RD.
By the Poincare model of Lobachevskii space we mean the half-space {z=R" z, >0}, in which
the Lobachevskii metric is given by the following differential form:

dz%
ds? = 2 222
: 2
1

, k= const=£0,

o Lbg®

The group T consists of transformations t of the form
(@4 ooy Tn) > (Mg ATty ooy AT, T ey,

where A > 0, a;, ..., aph-1 are real numbers, and is a solvable, noncommutative Lie group.

Omsk. Translated from Sibirskii Matematicheskii Znurnal, Vol. 27, No. 3, pp. 51-67,
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Let & be a line, passing through the point e. We denote by A the set of all lines
parallel to the line % (in some given direction). Let w be an arbitrary two-dimensional
plane, passing through the line 2. By the symbol ¥; we denote the set of all equidistant
curves lying in w and corresponding to the line %. We also introduce the set ¢, of
all horocycle lying on w and orthogonal to £; in addition, if h & ¢; is a horocycle,
then h, considered as the limit of circles, 1s characterized by the fact that the
centers of the circles cited are taken on the ray 2t ¢ & which, starting from some point,
goes in the direction in which the family of lines A is parallel.

We assume further that A is represented in the Poincaré model by the coordinate lines
x;. Then to the elements of the sets ¢; and ¥ correspond Euclidean lines (more precisely,
intersections of Euclidean lines with {re=R": 2z, > 0}).

We denote by I the set of all elements gotten from elements of the set Z%EA U ¥y U oy
taken for any plane m, % © 7 with the help of the group T. I.e., if o € I then there exist
t € T and an element a' & Z% such that o = t(a'). One can write symbolically

=T( | .z;,).
n,ICT
We shall call the elements of the set I quasilines (for short, g-lines). In the usual

way, from quasilines one can get g-rays, m-dimensional gq-planes, etc. In the Poincaré model
the intersection of any Euclidean line with the half-space {x; > 0} is some g-line.

By a g-cone C with vertex at the point e we mean a set which, together with each point
x, contains the whole q-ray starting at e and passing through x.

A set A ¢ LD is called g-convex, if along with any two points x and y of it, it con-
tains the whole g-segment with ends x and y.

By %(x, y), x # y we denote the ¢-line passing through the points x and y, and by
2¥(x, y), the q-ray starting from the point x and passing through the point y. We denote
the quasisegment with ends x and y by [x, yl.

(1.3). We call sets A, B <« L” T-parallel, if there exists a motion t = T such that
t(A) = B. We say that the family of T-parallel sets {M.: z=L" is preserved under the
map f: LD > L if f(My) = Mg(x) for any ze L™

(1.4). We denote by [AI the object corresponding to the object A ¢ L under its repre-
sentation in the Poincare model. Thus, IL"l = {(z,, ... z)=R 2, >0}. We set H= {x; = 0}.

(1.5). If A c L® then by int A, A, 3A we denote respectively the interior, closure,
and boundary of the set A.

(1.6). Definition of gq-cone L x K. Let L be a g-ray issuing from e, K be a g-cone
with vertex e, where L and K do not lie in one g-plane and L N K = {e}. We extent IL
[K| in the natural way in R* to a (Euclidean) ray [ and cone K, respectively. Then by
L x K we shall mean the set such that |L x K| = |L} n (L x K). The set L x K is a g-cone
with vertex e, and it can be defined without resorting to the Poincaré model.

b4

In fact,
LxK= | lT(,x),

where A= |J L,.

x=K

(1.7). Ve shall call a map quasiaffine, if it maps any g-line to a g-line.

Obviously the group T consists of quasiaffine motions.

2. Quasiconical Orders

(2.1). It is easy to see that a g-convex quasicone C defines an invariant order in
LN, j.e., the family of sets {(,: z=7JI"} generated by it satisfies conditions 1-3 of (1.1)
in Sec. 1. We consider three cases:

1) €+ LXK;

2) C=LXK;

3) CHLXKpur C=LXK.
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These three cases exhaust all possibilities which arise in. the study of quasiconical
orders. The corresponding isotopic homeomorphic maps f are studied in Secs. 3-5. It follows
from these sections that in the typical (first)} case the map will be quasiaffine. The other
two cases are exceptional and the corresponding maps can be rather arbitrary, but neverthe-
less well described.

{2.2). 1Isotopic maps f of general orders, i.e., ones which are not quasiconical, will,
under specific conditions, preserve certain orders, defined by a q-cone, and consequently
in the "typical' case will be quasiaffine [2]. How to do this is shown below in Sec. 6.

(2.3). Ve note an important fact, frequently used in the course of the proof of
theorems. If {M.. z=E} is some family of sets, where ¥ < E is either a g-cone or a union
of g-lines, then to study the maps f: E - E preserving the given family, it makes no dif-
ference whether E is the Lobachevskii space L™, m 3> 1 or a quasiplane which is not a horo-
sphere.

In fact, it is easy to see this by passing to the Poincaré model.

3. Map f in the Case of a Quasicone C # L x K

We assume that int C # @.

(3.1). THEOREM 1. If anorder inl™, n > 2 is given by a gq-cone C, such that 3C does
not contain a g-line and C # L x K where L is a gq-ray and K is a g-cone of lower dimension,
then any homeomorphic isotonic map f is quasiaffine.®

We preface the proof of the theorem with the following lemma.

LEMMA 1. Let o be an open half-plane, lying in the affine plane t and (A ze1] (i=
1, 2, 3) be three different families of parallel lines in t. If f: ¢ + o is a homeomorphism
such that f£(Ly) = Li(x), where Li=o | M, z=0,i=1, 2,3, then f is affine.

Proof. TFor a 2-plane o this result is proved in [1, p. 12]J. Let ¢ be a half-plane.
We dencte by H the boundary of 0. We extend f to H. Let us assume that Ly, L% are half-
lines. We extend Lg, L% to H in the natural way. Let {z} = L} n L{ and z & H. Then

Liwy N Liy N H== . In fact, let us assume that Ll N L%, N H = @. The half-lines L%(x)

and L%(y) bound a domain U such that one can find a point a « U, for which Li, 12 ¢ U,

(LU L) N L= @, (L2 Y LE) 0 Loy = O (0

Passing to preimages, we note that

ey v Eln ey Ll o,
which contradicts (1). Thus, L%(x) n L%(y) = {z'} and z' & H. Then by definition let

f(z) = z'. Thus we get a continuous and bijective extension of f to H. Let L3, L3, where
laj= (0, ..., 0), be taken on the coordinate axes £, 71, and the rays £(L}), f(L2) on the
coordinate axes £', n' in the image. On L} we take a point b. Through it we draw lines
Afs Aj+ Through the points of intersection ci, ¢, of these lines with A%s A3 we draw lines

Aél, Agz, etc. We shall have on ¢ an integral lattice {(na, mf): n, m integers}. Since
the map f carries parallel lines into parallel ones, the construction is preserved. Con-
sequently, f({(no, mp)}) is the integral lattice {(na', mf'): n, m integral}. If f(g, n) =
(£,(8, n), £5(8, n)), then £1(&, n) = £,(£), £,(&, n) = £,(n), £,(na) = nf,(a) = na',
f2(mB) = mf,(B) = mB'. This is true for any a«, B. Hence, taking @, 8 -+ 0 and keeping in
mind that f is continucus, we get: f is affine.

Remark. The lemma remains valid if we assume that f maps three families of lines (in
general position) to three analogous families of lines. The proof of this fact differs
inessentially from that given above.

Proof of Theorem 1. Since f is a homeomorphism, we shall assume that C = C, i.e.,
C is a closed quasicone.

(a) In our notation C-={zeL" z<e}, where < is_the order given by the q-cone C.
1f f is an isotonic bijection, then obviocusly £(Cy) = Cf(x)- We consider the doubly super-

*In [2] we erroneously said "isometric". The latter is valid under additional conditions
imposed on C.
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ficial g-cone Q = 3C U 3C~. Let A be an arbitrary g-line passing through the point e and
lying on Q. In the Poincare model A is represented by a Euclidean line which can have a
point of intersection with the hyperplane H = {zr=R™ z,=0}. Let x, y X and x # y.
We shall say that the q-ray 2t(x, y) is free, if its representation in the Poincare model
does not intersect the hyperplane H.

Let now y be a point on the boundary 8Qy such that the g-ray ﬁ+(x, y) is free. Let
My =UC 2zl (z,p), ¥ 'z y)cac,,
and
My=UClzel" (@@, pl, if [Tz ycacs.

If ﬁx happens to be a g-half-space, then 1 = BMXY is the g-tangent gq-plane of the quasi-
cone %§ at the point x and at the same time (by symmetry) g-tangent to the g-quasicone Cy
at the point y. Conversely, if at y the quasicone Cy; has q-tangent q-plane 1, then t =
8Myy when the ray. ¢¥(x, y) is free, and t = 3My,, where uel(z, y)\I*(z, y), when t*(x, y)
is not a free ray. ' ‘

In general ﬁx is represented in the Poincaré model by a convex cone which is a di-
hedral angle containing the line passing through the points X and y. Let Rygy be a g-plane
of highest dimension passing through x and lying in Mxy-

If M,y is defined, then as is easy to verify, Myy = Mxy if and only if u, v € Rgy. Con-
sequently, Ryy is the set of all u for which there exist points v such that My, = ﬁxy

Consequently, the sets Mxv and Rygy are defined only in terms of the order and topology.
Hence, they are preserved under a continuous map f such that E(Mxy) and f(ny) have the
same meaning.

As we explained above, the quasicone Gy has a g-tangent g-plane 1 at the point y, if
and only if there exists a point u, possibly equal to y, such that t = dMy,;. Hence Ry, =
dMgy- The homeomorphism f preserves this equality, which is the condition defining the
q-tangent g-plane. Hence, to g-tangent gq-planes of quasicones Cy correspond g-tangent
q-planes of quasicones Cg(y) and conversely.

(b) q-Tangent T-parallel q-planes T;, T,, Ty = t{1;), where t & T, aremapped to g-tan-
gent T-parallel g-planes 1) and 1, respectively, for which there exists a t' e T such that
15 = t'(1}) (in the Poincaré model, the g-planes 1,, T, and 1}, T; are pictured as pairs
of parallel planes |ty|, |1,| and |7!|, |74|). The converse is also true.

First let us assume that t4 = t'(t!). We show that v, = t(1,).

In fact, the gq-planes t}, T4 do not intersect. Hence their preimages v, = f~'(t}),
1, = £73(1}) do not intersect. If v, is pictured in the model plane by a parallel of the
hyperplane H, then obviously so is t,, i.e., T, = t(t;) for some element t = T. In general,
if 1, # t(t;) then the g-planes t; and 1, bound a q-convex closed domain U such that if
x & U then either Cy ¢ U or C; < U. For definiteness let the first inclusion hold. Since
uwNt.=%, one can find points u & t; and v &. 1, such that C,N7,=@ and C,N1, =02,
Then Cﬂu)ﬂ'é==£5 and Cyy T, =@. But since 1) = t'(1}), at least one of these equations
is false. We have found a contradiction. Consequently, T4 = t'(t}) implies t, = t(t,).

Now let 1, = t(t;). We set t! = f(7,), 1) = £(1,). To be definite, we assume that
1, 1is q-tangent to C4 and 1; to Cy. Then 1, is g-tangent to Cf(y) and there exists a
g-plane t'(t!) g-tangent to Cg(x). As was established above, to the quasiplane £ ()
corresponds the q-plane 1,. But then f(1,) = t'(1i) = 1}.

Thus, the conditions t, = t(ty), T4 = t'(t}) imply one another under the homeomorphism

(c) The g-tangent q-planes of the quasiconic C bound it. Hence one can take n g-tangent
q-planes 753 (i =1, ..., n) bounding the n-faces of the quasiangle V. Since under the map
f the g-tangent g-planes go into g-tangents, and T-parallels into T-parallels, the edges
of the quasiangles V4 too go into edges of the quasiangles Vg(yx) which are compatible with
the help of the group T. We take any edge L of the quasiangle V. The quasicone C has
g-tangent q-planes which differ from 14 since otherwise C =V, i.e., }Cf would be a Cartesian
product. All such g-tangent g-planes cannot pass through the edge L, because if they did,
one would have C = L x K. Hence there is a g-tangent g-plane T not passing through the
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edge L and differing from the g-plane 14 opposite to it. Hence, besides L there is at
least one more edge N, not contained in t. The quasiplane ¢ spanned by L and N intersects
7 in a g-1ine S = o N t. Thus, we have on ¢ three families of g-lines, T-paralliel regpec-
tively to L, N, and S. '

Under the map f the g-lines which are T-parallel tc L and N go into T-parallels. Hence
the g-planes oy go into two-dimensional g-planes Ef(x),theqftangent g-planes Tx 80 into
q-tangent g-planes %f(x)’ so that the g-lines Sy = gy N Ty go into the g-lines Sg(x) =
Of(x) N Tf(x)-

If one now makes use of the Poincaré model, then i0X|, |5X§ are affine half-planes (or
planes), and {|Lg|, |Ng|, |Sx|} are three families of parallel half-lines (lines), mapped
onto the corresponding three families of parallel half-lines (lines) {iif(x);’ !Nf(x)i,

[Se(x)1-

It is easy to see that if 0[ is a half-plane, then jf(o)l = !5] is also a half-plane.
Applying Lemm 1, we see that [f| is affine on |ci in the Poincare model, and consequently,
the original map f is quasiaffine on the g-plane o.

The map |f| maps lines lying in |0! and parallel to H to lines parallel te H. In our
arguments the edge L was chosen arbitrarily. In all there are n edges of the quasiangle V.
Hence each of them lies on some two-dimensional g-plane on which f is quasiaffine.

Among these g-planes one can take (n—1) g-planes o;, ..., 0y-; such that the lines
passing through the point e, lying in |oi| and parallel to the hyperplane H, are in general
position. Let them correspond to the g-lines XA,, ..., Ap.;. By what was said above,

[£1(JAixl) = [Rif(x) |, where |X;| are lines parallel to the hyperplane H. Without loss of
generality we assume that the edge IL' is not parallel to H. We take the lines }LI, [Aii

(i =1, ..., n— 1) as axes of an affine coordinate system in the half-space [LP| = {x, > 0}.
Since lfl is affine on these axes, ffl is affine in [Ln[. But then f is guasiaffine in

LP. Theorem 1 is proved.

THEOREM-1'. The assertion of Theorem 1 remains valid if we assume that f{(c) is a
quasicone, and f(Cg) is gotten from£(C) with the help of the group T for any ze L™

The proof of Theorem 1' does not differ from the proof of Theorem 1.

4, The Case C =1L x K

In what follows we shall need

(4.4). LEMMA 2. Tff:L0->L0(n = 2) is a homeomorphism, preserving the family of
g-lines {N.: z= 1" (i=1, .., n) (i.e., f(Nj4) = Njg(x) for any x & L® (i = 1, ..., n)),
which is the identity on q-lines N;, ..., N, passing through the point e and in general
position, then f is the identity on LT,

Proof. 1If among the g-lines N,, ..., N, there exist (n — 1) lines which are a horocycle,
then the assertion of the lemma is obvious (cf. the end of the proof of Theorem 1). Hence
we assume that there are not such g-lines. We denote by Q the g-hyperplane spanned by

Ny, ..., Np-;. Further, in the natural way we complete ]Q] and ]Nni to a hyperplane and a
line in R", but we leave the notation unchanged, i.e., |Q| and |N,|. By hypothesis @ is
not a hyperhorosphere, i.e., iQI is not parallel to H. If N, is a horocycle, then we set
U= |L“§. Now we define the domain U when N, is not a horocycle. Let {dll be the hyper-

plane obtained by taking the union of all lines [Nnxl such that IN,.[NH A |+ @, and 502{
coincides with some [le such that [Q,IN H N[N, + &. We denote by U ¢ |LA] the closed do-
main bounded by the hyperplanes IGI{, loa].

The rest of the proof is by induction on the dimension n.

A. n=12. let x « int U, so N NN, *Z and N,,NN,%@: hence since f is the iden-

tity on N;, N, it follows that f(x) = x, i.e., f is the identity on int U, and hence also on
u.

We take x ¢ U. Then either N, NN, # &, or NN, # 2. To be definite we take the
first; the second case can be considered analogously. Since f is the identity on N, f(x)
will lie on N,y by virtue of the fact that f(N.y4) = Nigx. Let {a} = [N, N H and b e N,
be such that |N1b| N H = {a}. There exists a sequence {by} < N, for which },—=b and

>0
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Nippy W Noxz= @ (m=1,2,...). Since f(by) = by, f(b) = b, one has f(Nlbm) = Nlbm’ £(N.p) =

Nip> so F(NVe) NNy, D, m=1,2,..., f(Nzx)ﬂN1b=g. It follows from this that f(N,g) = N,y,
i.e., {x} = Nyjx N Nyx remains fixed under map f. Thus the lemma is proved if n = 2.

B. Let the lemma be valid for dimension k << n — 1 and suppose we are in the case k =
n. Then in the half-hyperplane [QI there will be a family of preserved q-lines {N.: z=Q}
(i=1, ..., n—1), while f(Q) = Q. Since the consideration of LB"! reduces (cf. point
(2.3)) to the study of the half-space |[LM"!|, one has that [Q| does not differ in this from
|LN"1]| and one can use the induction hypothesis, considering f to be the identity on Q. But
then it is easy to conclude that |f| is the identity on U ¢ |L|. Now let x & U. We take
the g-plane S spanned by N;y, Nuy. Since S goes, under the map f, into the g-plane S'
spanned by Nif(x)s Npf(x) and S 0 Q * 2, and f is the identity on Q, one has £f(S) =5, i.e.,
S* = S. On S, f preserves the two families of g-lines {Nu: z= S}, {N,: z=S} Since upon
reducing consideration from S to ISI, |Sf in no way differs in the present situation from
IL2 , one can use the assertion of point A, i.e., assume it proved that lfl is the identity
on SI and hence f(x) = x, i.e., f is the identity on LM. The lemma is proved.

(4.2). Definition of displacement. Let L be a g-ray issuing from e, and E be a g-hyper-
plane containing the point e, and L N E = {e}. Let us assume that either N is a horocycle,
where N is a ¢-line containing L, or E is a hyperhorosphere. Then we have

Definition 1. A displacement of the first kind dpj, is a homeomorphism of LP, n = 2 to
itself such that

1) dgp, is an (arbitrary) homeomorphism on Nj

2) for any point x e LM we have dpp(Ly) = Lapr (x)> dpr(Ey) = Bapr (x)3

3) dpL|g is a motion from T (i.e., under the condition dpp(e) = e the displacement dgj,
is the identity on E).

It follows from the definition that dgp maps any q-line, T-parallel to the gq-plane E, to
another such. Now let L,, L, be two different g-rays, issuing from the point e, N;, N, be
g-lines containing them respectively, which are not horocycle, E; be a gq-hyperplane passing
through N, and E; N L; = {e}. Then we have

Definition 2. A displacement of the second kind dg 1,1, is a homeomorphism of L%, n =
2 to itself such that

1) dg 1,1, is an (arbitrary) homeomorphism on Ni;
2) for any x & LD we have

g1,y (Lix) = Liag g p 0 U=1,2); deyp,1, (Ev) = Euag g, 1

3) dg,L,L,|U, isa motion from T, where

Q=&ﬂLJMmﬂ=% U Eﬂ

er({ EqxN N, #2

(i.e., under the condition dElLle(e) = e the motion dg. 1, is the identity on U, or
dg,1,L,lu, = idy,)-

LEMMA 3. If d is a displacement of the second kind dElLle such that d(e) = e, then

1) d(E;) = E,, d(N;) = N,, d(E}) = EY, d(U;) = U,, d(8,) = 8,, where §,=4 ( U Ahx);

0
NixNEy=2

2) d preserves the families {E%,}, {Uyy}, {Si1x} and the family of (n — 2)-dimensional
q-planes {w;yx}, where T3 = S;5x N Eix;

3) d preserves the family of g-lines {Ny} provided Ny € miy, i.e., d(Ng) = Ngq(x) for
any point z= L™

Proof. Assertions 1 and 2 are obvious. We prove 3. We take a point x & LM arbi-
trarily. If x « U;, since Ny € m;4x ¢ U; and dIU1 = idy,, one has d(Ng) = Ny. If z=E\U,
then Ny = 7,5 N og, where oy is the two-dimensional g-plane spanned by L,y and Ny. But

og N 7, is a gq-line, T-parallel to Ny (and lox N m,| is parallel to H),_preserved under the
displacement d, since it lies in U,;. Since d preserves the family {L,.: zeL" by Definition
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2, it preserves the g-plane oy, or more precisely d(oy) = oyx. But then d preserves Ng,
because d(Ny) = d(w;y) N d(oyg) = m14(x) N ox is ag-line, T-parallel to the g-line Ny, i.e.,
the line Ng(x)-

Now let x & E;. Then Ny = l ¢ N 14, where 14 is the two-dimensional g-plane spanned
by Ny and Ny. Either Njgy N E; # &, or N.NE, =49, If N.NE, #* @ then 14 N E; is a
g-line, T-parallel to Ny, lying in E,, and consequently, preserved under the displacement
d, as was proved above. But then it follows from the preservation of 14 N E; and the
preservation of the family {N,: z=JI"} under the displacement d that d{ty) is the two-
dimensional q-plane, T-parallel to tx. But then d(Ny) = d(mix N tg) = Ti(x) N d(1g) is a
q-line, T-parallel to Ny, or d(Ny) = Ng(g): Finally, if N,.NE, =@ , we have

Nxz(\. Nzy)ﬂﬂlxs
N

yEN,

where N, is such that N, NE,# @ (here one uses the fact that N,is not a horocycle). Since
as was just proved d(N,) = Ng() and also the families {N,: y=L~} and {n,: y=1Lr} are pre-
served, we conclude directly that d(Ny) = Ny(x). Lemma 3 is proved.

Remark. Assertions 2 and 3 of Lemma 3 remain valid without the condition d(e) = e,

(4.3). Let £f: L2 » L2 be a homeomorphism such that £{Niy) = Nig(x) (i = 1, 2), f(e) =
e, where N;, N, are two different q-lines, which are not horocycles and pass through the
point e.

Each Nj is the union of two g-rays nj and Ly = (Nij\ng) U {e} of which L; is a free ray
(cf. the beginning of the proof of Theorem 1). If x e nj, then f(x) & ny. In fact, to be
definite let x & nj. If |Nyy| N [N | 0 H is a point (|N,g|, [Ny,| extend naturally to
lines in R?*), then TNZf(x) n le(z)l N H is also a point, as is shown in Lemma 1. From
this it follows that if f(x) € L,, then N, NN,= &. The latter contradicts the fact
that N, NN, &, Hence f(z)en,,

Knowing how f acts on n,, it is easy to determine the action of f on n,. In this
sense the actions of f on N,, N, are dependent. In fact, if x € n;, then f: ‘Nle N H >
IN2f(x)[n H. Hence if y = n, is such that [Niy| 0 H = [Nyu| 0 H, then [Nyg(y)| N H =

|N2f(x)j N H. In other words, the latter equation determines the location of the point
f(y) on n, which depends on the point f(x).

(4.4). THEOREM 2. Let C = L, x L,, where L,, L, are different ¢-rays, issuing from
the point e, let the order in L? be such that 8C does not contain a g-line. Then any C-iso-
tonic homeomorphism f can be represented in one of the two forms:

f=toodwrr, o dr (2)
or i
f="oe dN;_,Ll ° dN1L2, (3

where f;, is a quasiaffine transformation. In addition, the displacements in (2) and (3)
commute. In (2) the displacements of the second kind are not independent (cf. (4.3)), and
the displacement in (3) is completely arbitrary.

Proof. Since f is a homeomorphism it has the property that the edges Ligs Lyx of the
q-cones Gy map to edges. Obviously there exists a q-affine bijection f,: L? » L% such
that f(fLu) =L s, (=42, (*f))=e. Hence if g = £;'of then g(e) = e, g(Cy) =
'iﬁ .

Co(x) and g(Ljyx) = Lig(x) (1 = 1, 2) for any point x = L?, It remains o show that g can
be represented as a composition of two displacements of the same kind.

A. First let us assume that N; is a horocycle. We take a displacement dy = dy. 1,
such that °

d lN1 = glN17 d, (e) = e.
Then h; = dj'°eg has the following property:
hy l1\’1 = idy,, (4)

i.e., is the identity on N;. Since d, preserves the families of lines {Nu: z€ L2}, {Np ze=
L2}, one has that h; will be a C-isotonic homeomorphism. Now let d, = dy.1,_ be a displace-
ment such that v

353



dz INZ = h1 ‘N2’ dz (6) =ée.
Then if h, = dj'oh; then
Do, = 1w, (5)

But d, preserves the families {N;y4} and {N,¢} and, moreover, is the identity on N;.
From this is follows that h, preserves the families {N,;y}, {N,x} and by (4),

byl = 1dw,. (6)

Having (5) and (6) in mind, we can apply Lemma 2 to h,. We get that h, = idp2, i.e., g =
d,°d, or f = fyedyed,. That d;, d, commute is obvious.

B. Now let the g-lines N;, N, not be horocycles. Then g has a representation in terms
of displacements of the second kind.

The actions of the displacements of the first kind dy L,> dyn L, on N;, N, respectively
are comletely independent, which cannot be said of g and the dispiacements of the second
kind dy.1,1,» dN,L,L,- This is discussed in point (4.3). Llet 4, = dN,L,L, be a displace-
ment such’that

dy v, = 8|, d, (e) = e.
Then h; = d, '°g has the following properties:
hy|n, = idn, (7)

and it preserves the families of lines {N, 4}, {N,x}, i.e., is a C-isotonic homeomorphism.
By virtue of the dependence of g and d; on n,;, n, mentioned above, we get that dl‘nl = g|nl
or

fufn, = 1dn,- (8)
Now let d, = szLle be such that
d2|N1=h1lva dy(e) =e. (9)
Then it follows from (8) and (9) that
dyln, = idn s dyfn, = idn_. . (10)

The latter is valid again by virtue of the dependence of the action of d, on n; and n,.
Since by Definition 2 d, is the identity on U; = N,\n,, it follows from (10) that

dy|w, = isz. (11)
As a result, the homeomorphism h, = d;'°h; has the following properties: it preserves
the families {N;4x}, {Nyyx} and by (7), (9), and (11),
hy|v, = idw, s \Nz = idy,.
But then by Lemma 2 we get that h, is the identity on L? so f = f;°d;°d,. The commuta-
tion of d,, d, i1s obvious. Theorem 2 is proved.

(4.4). Suppose given in LM, n = 2, an order C = L, x ... x Ly, where int C # &. Here
Ly (1=1, ..., n) are g-rays issuing from the point e. As before, we denote by Nj the
g-line containing the q-ray Lj, and by Ej the gq-hyperplane spanned by N;, ..., Nj-;, Ni4y,
.» Np-
Lemma 4. Let f: L*—L" n=3, be a homeomorphism such that f(Njy) = Nif(x) (i =1,
., n) and the gq-lines N;, ..., N, are in general position and are not horocycles. Then

f is quasiaffine.

Proof. For n = 3 we consider, on the gq-plane E,, the three families of lines {N,y},
{Niyx}, and {E; N S;3x}. By hypothesis the map f is such that f(e) = e, and without loss
of generality we can assume it has the property f(E;) = E; and preserves the cited families
of q-lines. Then by Lemma 1, f is quasiaffine on E; and hence on N, and N3. From the
symmetry of the g-lines N;, N,, N; in our investigation, we conclude that f is also g-affine
on N;. One can find a q-affine transformation f, such that fOINi = f|Ni (i =1, 2, 3).

Hence if g = fjl°f, then giNi = idNi (i =1, 2, 3). By Lemma 2, in this case g is the iden-

tity on L3, i.e., f = f;. The case n = 3 is proved.
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In general it is easy to see that f is g-affine on each g-line Nj, because each such
line can be included in the three-dimensional g-plane ¢ spanned by the three g-lines Nj,
Nj, Ni. Since the study of !o| does not differ (cf. (2.3)), inthe direction of interest

to us, from the study of |L3| we see, just as above, that f is g-affine on ¢ and hence alsc
on N;y. From here on we argue just as in the case n = 3. Lemma 4 is proved.

THECREM 3. Let f:L"—L" (n=3) be a C-isotonic homeomorphism, where C = L, x .., x
L, and 3C does not contain a g-line; then

el

1) if all Ny (i = 1, ..., n) are not horocycles, then f is quasiaffine;

2) if only N,, N, are not horocycles, then

f=lyederr,°derr odpg ° .. dp,L,; (12)
3) if Ny, ..., Ny (k = 3) are not horocycles, and Np4ys ..., Ny, are horocycles, then
F=Todry nyy oo o dE,L (13)
4) if only N, is not a horocycle, then
f=foedrr ... de,ur, (14)

Here f, is a quasiaffine transformation, all the displacements in (12)-{14) commute. In
addition, any displacements of the first kind are admissible, and for the displacements of
the second kind one should consider point {4.3).

Proof. The map f maps each family {Njy} to some family {ij}. In fact, each Njy is

the intersection of the g-planes E g4, ..., Ei-1, x» Eit+1, »x» ...+ Epg, which are g-tangent
to Cy. Since f maps gq-tangent g-planes to g-tangent g-planes (cf. the proof of Theorem 1),
we conclude directly that f(Njy) = Njf(x) for any point ze L™

One can find a quasiaffine bijection f,: L% -~ LM such that if g = f;' °f, then
g(Nu) =Ny (i= 1, ...n), gle)=e
Case 1. According to Lemma 4, the map g is quasiaffine, so f is also.
Case 2. Let d; = dE1L1L2 be a displacement having the property that
dilv, =&l

Then h, = dj'eg is the identity on N;, and by the dependence of the action of g and d, on N,
N, we get that

Py, = idn, (15)

where we have used the notation of the proof of Theorem 2. In accord with Lemma 3 and Defi-
nition 2 the displacement d; preserves the families of gq-lines {Nijg} (i =1, ..., n). Hence
h; also preserves them, i.e., h; is a C-isotonic homeomorphism. Let d, = dEszLl be a dis-
placement such that

AM%zhm, (186)
Then by Definition 2 and Lemma 3, the displacement d, is also C-isotonic and preserves the
families {Njy} (i =1, ..., n) and in addition, by the dependence of the action of d, on
N;, N, we get from (15) and (16) that

dy [nl = idp ,

Since d, is the identity on U, o N;\n, one has that d, is the identity on N;. Hence if
h, = d;*eh;, one has

h2!N2 = isz’ h2IN1 = idNi'
Moreover, h, preserves the families {Njix} (i =1, ..., n). We take a displacement d, =
dp_1,. such that
3+3
iy, = B,

Then it follows from Definition 1 that if h, = d3'eh,, then h, preserves the families {N

ix}
(i=1, ..., n) and ix

) hs !Nj = ide (] = 15 21 3)
Continuing this process, at the (n — 2)nd step we take a displacement dy = dFuly such that
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dn l[\'n = lin_y EV,,L
And then for hp = dj'oh,., on the basis of Definition 1,
I, INj =idy; (=12,...,n).
By Lemmaz 2 we get hp = id g, i.e., (12} holds for f.

Case 3. Let ¢ bhe the quasiplane spanned by N;, ..., Ng. Then g{o) = ¢ since g is a
homeomorphism, and in view of Lemma 4, the map g is quasiaffine on o. Now let f, be a
quasiaffine map which coincides with g on ¢ and preserves the families {Njy} (i = 1,
n). Then h = fi'eg is the identity on ¢ and preserves the families {Nj,} (i =1, ..., n).
Let d, = dEk+1Lk+1 be a displacement such that

-

dy{wy iy =P |wpyqe _
Then if h; = dj'eh then h; preserves the families {Njx} (i = 1, ..., n) and
By |y = idy, (=1, ..., k1)

by Definition 1. Then we take d, so that

= 9B i,Llpts
. o [Wppp = Py Wy
and we consider h, = d;'ch;. The map h, preserves the families {Njy } (i = 1, ..., n) and
Bl = id; (=1, ..k +2)
by Definition 1. Finally, at the (n — k)th step, we introduce the displacement dp-k =
dg 1. such that
“ntn
Aok N, = An—p—1 |N,-
Then if hy-p = dplgehp-k-1, then h,_i preserves the families {Njy} (i =1, ..., n) and
hn-—h‘Nj = idN]. (] = 1, ey n).
By Lemma 2, h,-) is the identity on L%, so (13) holds for f.
Case 4. We take d, = dElLl such that
iy = 8wy

Then if h, = dj'eg then h; is the identity on N, and preserves the families {Nj4} (i =1,
., n) by Definition 1. We take d, = dEZL2 such that

dy |, = T |y,
etc., At the n-th step we take d, = dEnLn such that

dn ‘Nn = hn-] INN"

Then h, = dj*oh,.; preserves the families {Njy} (i = 1, ..., n) and is the identity on each
gq-line Ny, ..., Ny. By Lemma 2, h, is the identity on L, Hence (14) holds for f. Theorem
3 is proved.

(4.5). Now we consider an order C = L; x ... x Ly x X in L%, n > 4, where int C+# 4.
Here Lj are different g-rays, issuing from the point e, and K is an (n — k)-dimensional
quasicone with vertex e. We denote by E; (i =1, ..., n) the g-hyperplane spanned by L,,

oy Li“l’ Li+1, v ey Ln, K-
THEOREM 4. Let C =L; x ... x Ly x K, where K # L x K,, Lis aq-ray, K; is a q-cone,

dim X = 3 be an order in L', n = 4, where 3C does not contain a gq-line, and let f: L' »
LM be a C-isotonic homeomorphism. If the g-cone K lies in a horosphere,

1) provided N; is not a horocycle, one has
f=feedrr,°-..odp,1,; (17)

2) provided N,, N, are not horocycles, one has

f=feedpLr,°dprr ~dpp > ... dpL; (18)
3) if Ny, ..., N¢ (t = 3) are not horocycles, and Nt4i, ..., Ny are horocycles, then
f=Toodr, 1y 0 - on 0 OB L (19)
4) if all Ny (i =1, ..., k, k ='3) are not horocycles, then f is quasiaffine.
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If ¥ does not lie in a horosphere,

5) if all Ny (i = 1, ..., k) are horocycles, then

F="Fee d-EiLl °uu.oliyr,; (20}
6) if Ny, ..., Ny (t = 1) are not horocycles, and Ny4,, ..., Ny are horocycles, then
L A A (21)
7) if all Ny (i =1, ..., k) are not horocycles, then f is quasiaffine. Everywhere

here f, is some quasiaffine transformation and the displacements in (17)-{21) all commute.
The displacements of the lst kind are any admissible ones, and for the displacements of
the Znd kind one must consider the remark of point (4.3).

Proof. Since f is a homeomorphism, one can assume that ¢ is closed. Each Ny contain-
ing L; is the intersection of q-tangent g-planes to C. Under the map f, as we know,
g-tangent g-planes go into ¢-tangent ones. Hence f(N;) will be some Nyf(e)- The gquasiplane

R k :
E = [} E;, spanned by the g-cone K, is mapped into the g-plane E;,= . Eiqe, since £(E;) =
i=1 =i

7
at f(e) = e. Then f(E) = E and f preserves the family of q-cones {K, x=FE}. Since X =

L x K;, £ is quasiaffine on E on the basis of Theorem 1, if E does not lie in a horosphere,
and on the basis of Theorem 3 of [1], if B lies in a horosphere.

ng(e\ due to the fact that E; are g-tangents to C. Without loss of generality we assume
t

We take a g-affine bijection f, such that fy{e) = e, £,(Ly) = £(Ly) (L =1, ..., k),
£,(K) = £(K) and f, coincides with f on E. Then g = f;'of has the properties

g(€)=C, g(Ly=E: (i=1, ..., k), gls = ids.
A. Let us now assume that E is a horosphere.

Case 1. We take d, = dE1L1 so that d; coincides with g on N;. Then h; = d7leg pre-
serves the order C and is the identity on N,, E. We take d, = dEZL so that d, coincides
with h; on N,. Then h, = d;'ch, preserves the order C and is the iaentity on N;, Na, Eetc.
At the k-th step we shall have dy = dEkLk coinciding with hi., on Ny while

hk"liNj=ide (jﬁi,.g.,li*i), hh-—i\E::ldE
Consequently, hy = dj'ohy_, will preserve {N,:zeL"} (j= i,,¢;k), {Es:: ze L™ and
Il =1dw, (=1, ..., k), belp = idg.

From this it is easy to conclude that hy is the identity on LPB. TFor this it suffices
to repeat the arguments given at the end of the proof of Theorem 1. Since hy is the identity
on LB one has that f has the form (17).

The proof of cases 2-4 is essentially a repetition of the proofs of cases 1-4 of Theorem
3. Hence we omit them.

B. Let us now assume that K does not lie in a horosphere or that E is not a horosphere.

Case 5. Let d; = dg 1, be such that d; coincides with g on N, so h; = djleg is the
identity on N;, E, and also as before is C-isotonic. For the rest we repeat the proof of
Case 1, We proceed to Cases 6 and 7.

Let N; not be a horocycle. We denote by I the guasiplane spanned by Ny, E. Obvicusly,
g(Z) = T. We denote the restriction of g to I by gi. The map g, preserves on I the family
of g-cones {Q.: z=3Z}, where Q = L, x K. Just as in Theorem 1, one proves that the g-tangent
quasiplanes to Qy, X e I are mapped by g, to g-tangent planes. We show that there exists a
family {h.t €3} of g-lines (where )L =3,cdKUaK", K‘::{yEEE: y%e}, and %vis the order
defined by the q-cone K in E), preserved by the map g,.

In fact, we take a q-ray A ¢ 3K issuing from e, such that the g-line X\ containing it
is not a horocycle and along A the g-cone Q has g-tangent g-plane £, not lying in E. If
L; N K= A, then {A: z=2} is the family sought. In fact, in this case for x = I, we
have Ky N I; = Ag.

But g; preserves {K,: z=3} and g,(2,) = £, since g, is the identity on E and g, maps
g-tangent quasiplanes to Qy to gq-tangents. Hence A and Ag, x & I, remain T-pavallel after
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mapping, or more precisely, gl(Ax) = Agl )2 because g;{A) = A. Now if x & I;, then x =
L;, for some z & E. But then g.(2,) = 1g.(z) since g,(%;) = I, and T-parallel g-tangent
quasiplanes are mapped to T-parallels, and consequently

81 (Ae) =g, (Kx N 21 =2, () N g, C1d) = Ky N Zagy000 =Kig ) N Bz = Ay ),
because 2:(z) =12, g:(2)= 2y, i.e., gl()‘x) = )‘gl(X)'

Let us now assume that X N &; = K, is a g-convex g-cone which does not reduce to a
g-ray. In this case we consider on I, the family of g-cones {Q.: z=3}, where Q, = L; x
K,;. We denote the restriction of g; to Z; by g,. Then g,(Z,) = ;. Obviously K, does
not lie in a horosphere.

Consequently, the consideration of g,: 3, = I,, preserving {Q.: < Z,} with the object
of picking out generators of the family preserved, does not differ from the same problem
which we started to solve in relation to g;: I -+ % preserving {Q.: z=Z}. In other words,
the case "K N I, is not a q-ray" forced us to consider the same problem, but in a g-plane
of lower dimension. Hence one can repeat the arguments already given above. As a result,
we will introduce a quasiplane I, g-tangent to Q;, not lying in E, preserved by g, and a
g-ray A; ¢ 9K; such that the g-line XA, containing it is not a horocycle and 2, is g-tangent
to K, along A,. If Ky n %, = A; then the family {j,: z=2} will be the family of g-lines
sought, which is preserved under the map g,. Here in passing from {L.: z=2J to e z € 2}
one uses the fact that g, is the identity on E, as is g, on E N %;. However if K, N Z, =
K, is a q-convex g-cone which does not reduce to a g-ray, then one should again lower the
dimension, i.e., consider g, the restriction of g, to I, which has the properties g5(Z,) =
T2, 83(Qpg) = nga(X) for x = I,, where Q, = L; x K,. As a result, either the required
family of preserved g-lines will be picked, or we arrive at gui;: Ip »> Ip, dim Iy = 3,
gn+1 preserves the families of g-cones {Qp: z=3Zn}, where Qp = L; x Ky, dim Ky = 2. In
this case we take as the q-ray sought any generator of the g-cone 9K, (cf. the beginning of the
proof of Theorem 2).

Thus, there exists a family of g-lines {i: z=3}, preserved by the map g;: I - &
where A is not a horocycle. By now it is obvious, since K # L x K, that one can choose two

such families: {i. z=3I}, (.t xEZ}L eshNA, ANA={e}; A, %. aot horocycles, A, X < 3K U
K™ and g:(0g) = A5 (x)» 81(Rg) = Ag (x) for x = I.

On N,, A, X let us span quasiplane ¢. Obviously g;(c) = o. Then by Lemma 4, g; will be
quasiaffine on o. But since g, is the identity on A, X by virtue of the dependence of the
action of g; on A, X, N; the map g; will be the identity on N;. From this, thanks to the
fact that g, is affine on N;, we get that g, is the identity on N, or g is the identity on
N;.

The inference is as follows: g is the identity on each g-line N; which is not a horo-
cycle. Hence one should introduce the g-plane E spanned on E andvq—iines Ny, «voy Ne (£
1) which are not horocycles. Then g is the identity on E, and it remains to construct dis-
placements‘dEjL (j > t) along the remaining q-lines Nyy;, ..., Ng. In Case 7 one does not

have to do this, and in Case 6 one repeats the standard argumants (cf. Case 1). Theorem 4
is proved.

5. The Case C # L x K, C =1 x K

We assume that 3C does not contain a g-line and intC # &,

_ (5.1). On the Lobachevskii plane we consider an order defined by a g-cone C such that
C =1L, x L,. Then C is gotten from C by subtracting one or two edges at once. In this case,
as is easy to see, any C-isotonic homeomorphism can be calculated from (2), (3).

(5.2). Let C be a quasicone, defining an order in the Lobachevskii space L®, and C =
L, x L, x Ly. Then C is obtained from C by removing edges, faces, or part of the interior
of faces. In the first two cases a C-isotonic homeomorphism f is described by Theorem 3,
i.e., it has one of the following forms:

1) it is quasiaffine if N;, N,, N3 are not horocycles;

2) foedg 1, °dE,1,°dE,L, if only one of the g-lines Nj is not a horocycle;



3) fo°dElL1L2°dE2L2L1°dE3L3s if N;, N, are not horocycles and N; is a horccycle. Here
f, is a quasiaffine transformation.
If part of the interior of one face is removed, then

4) f is quasiaffine, if N;, N, are not horocycles, N; is a horocycle, and part of a
face of L, x L, or L, x L; is removed;

5) £ is fo°dE3L3 if N;, N, are not horocycles, Ny is a horocycle, and part of a face
of L; x L, is removed;

6) f is f0°dE1L1’ if M, is not a horocycle and N,, N, are horocycles, and part of a
face of L, x L; is removed;

7) f is fo°dE2L2 if N, is not a horocycle, N,, N3 are horocycles, and part of a face
of Ly x Ly is removed;

8) if part of the interior of two faces is removed, then f is quasiaffine.

Assertions 4-8 are trivial, since when part of the interior of a face is removed, the
rest is a g-cone, for which f will preserve a generator of the boundary. Consequently,
in the face, in addition to edges there appears another q-line preserved by f. It remains
to apply Lemma 1 or its Euclidean analog.

(5.3). The cases of dimension 2 and 3 considered above suggest what will happen in
n-dimensional space. Since C = L x X any C-isotonic homeomorphism, being C-isctonic, can
be described by Theorems 3 and 4. Considering that f is a C-isctonic homecmorphism, we
arrive at the following inference: the displacements in (12)-(14), (17)-(21) cannot be
arbitrary but only quasiaffine, for the reasons indicated at the end of point (5.2).

Here the form (12)-(14), (17)-(21) of the map f is preserved if C is gotten from C

by removing entire edges or faces of a face, etc. When one removes only part of the interior
of a face (part of the interior of a face of some face of higher dimension), in the corre-
sponding formulas for f the displacements will reduce to guasiaffine transformations. If
one removes part of the interior of faces lying in horospheres, then this assertion follows
from Theorem 6 of [1]. In removing part of the interior of faces net lying in horospheres,
there may apppear a family of preserved g-lines {N.: z& L") in addition tc the q-lines L,

..y Lg, such that N is not a horocycle. Consequently, if among N, ..., Ny there were only
two which are not horocycles, N;, N, thenone gets three. Then by Lemma 1 f will be
q-affine on Ny, N, and in (12), (18), displacements of the second kind disappear. If only
the gq-line N, was not a horocycle, and the rest N,, ..., Ny are horocycles, then in the pre-
served g-plane o spanned by N,, N there will be three families of preserved g-lines: {N 4},
{Ng} and {og N E;x}. In other words, f is g-affine on o, i.e., on N,. Hence in (14), (17)
the displacement dy 1, disappears, but here displacements of the second kind do not appear,
as one could think, looking at the appearance of the two preserved g-lines N;, N which are
not horocycles.

The concrete form of the .C-isotonic homeomorphism f can be determined from the precise
description of how C is obtained from C.

6. Contingency Theorem

Let us assume that the invariant order P in L, n = 2 is a set satisfying the follow-
ing condition:

_ A. There exists a neighborhood of the point e, such that in it, the intersection P N
P- does not contain points other than e, where Pr={zelrn rs<el

We show that a P-isotonic homeomorphism is necessarily C-isotonic, C being an order
defined by a quasicone.

(6.1). By a quasicontingency {(q-contingency) of the set M ¢ L% at the point a we mean
the g-cone formed by all limits of q-rays issuing from 2 and passing through x e M, x # a,
as x > a. We denote the quasicontingency by qc(M, a). If the point a is not a limit for
M, then by definition we shall consider that qc(M, a) = {a}. It is easy to verify that

a g-contingency is a closed g-cone and qc{M, a) = qc(M, a).
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Suppose given an order P on L. By a directed curve issuing from the point x we mean
the image of the half-axis [0, +*)=R under a continuous and monotonic map of it into LI
under which 0 is mapped into x. Obviously any directed curve issuing from x is contained
in Py.

THEQREM 5. Let P define an order in LR and C = qc(P, e). Then

1) C c P and C is a closed g-convex g-cone;

2) if P is a closed set and P satisfies condition A, then the boundary 8C does not
contain g-lines and C coincides with the union F of all directed curves issuing from the
point e.

Proof. By a q-ray of the q-contingency C we shall mean a ¢-ray issuing from e and
contained in C. The case e¢ P\{e} is trivial. We assume further that e is a limit point
for P. The proof given below becomes transparent if one uses the Poincaré model.

1. Let L be a g-ray of the g-contingency C. There exist q-rays L,=I*(e, z,), 2, P,
issuing from e, passing through xp such that L = lim L, as x, » e. Along with the point
X the g-ray L, contains all points of the form a,.=ino...otale), where t, € T is a motion

carrying e to x;. As ¥, » e the points xux condense on the g-rays L, and their limits form
the gq-ray L. But all x,; € P and consequently, L ¢ P. Hence C ¢ P. As was said above,

C is trivially a closed set. We prove its q-comvexity. Let L;, L, be two gq-rays from C.
By what has been proved, L;, L, ¢ P. Since P defines the order in L™ one has L,y © P for
any point x & L,. The set

U lec-ﬁ;

xSk,

as is easily seen in the Poincaré model, will contain the g-segment [x;, x,] for any two
points x; € L; and x, € L,. By the arbitrariness of the g-rays L;, L, and the points
X,, X, we see that the set C is g-convex.

2. Let P be closed and satisfy condition A. If 3C contained a g-line, then in view
of the g-convexity and closedness of C, 8C fi 3C” would also contain a g-line. But 3C c P
and 3C~ ¢ P~. Consequently, P N P~ would contain a g-line. The latter contradicts condi-
tion A. Thus, 38C does not contain a g-line, so € has a strictly supporting g-plane at the
point e (i.e., 'C] in the Poincaré model has a strictly supporting Buclidean plane in the
intersection with {x; > 0}).

Now we show that F ¢ C. Let us assume the contrary, i.e., that there exists a point
a = F, but a & C. Let L be an arc of a directed curve issuing from e and passing through
a. One can include the quasicone C in a q-cone K with vertex e, which is a closed g-convex
g-cone with boundary 3K, containing no g-lines. 1In addition a ¢ K. We take at the point
e a strictly supporting g-plane Q, separating K from the point a. Since C\{e} lies inside
K, it follows from the definition of g-contingency that there exists a neighborhood U of
the point e for which P N U ¢ K. Hence some initial segment of the arc L is contained
in XK. TFrom this we conclude that L intersects Q. Let b be the last point (in the sense
of the order on L) of the arc L at which L intersects Q. Let L' be the part of L included
between b and a. Obviously L' < Py. Since Py 1 Up € Kp, some initial segment of the arc
L' is contained in XK. The quasiplane ¢ will be strictly supporting for Ky because b & Q,
and under movement e > b by motions from the group T, Q goes to Q. Hence, the arc L' on the
initial segment will be separated from the point a, and comsequently the arc L' intersects Q
in a point different from b. The latter contradicts the condition according to which this
point b was chosen.

Thus, F ¢ C. Since any g-ray from C is a directed curve, one has C ¢ ¥. Thus, C = F.
Theorem 5 is proved.

(6.2). THEOREM 6. Let f: 1M > L0, n = 2, be an isotonic homeomorphic map. Then
1) for any x = 1M we have f(?x) = ﬁf(x);

2) if P satisfies condition A, then f(Cy¢) = Cg(x), where C is the quasicontingency of
the set P at the point e, i.e., C = qc(P, e).
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Proof. Assertion 1 is obvious. According to Theorem 5 the quasicontingency C coin-
cides with the union F of all directed curves in the order defined by the set P. Since _
f(ﬁx) = ?f(x) and f is a homeomorphism, it associates with a directed curve (in the order P)
another such curve. Consequently, £(Fy) = Fg(y). But Cy = Fy. Hence £(Cy) = Cg(y). Theorem
5 is proved.

(6.3). A direct example of how to use Theorems 5 and 6 is the following

THEOREM 7. 1If P is an order of L, n > 3, and satisfies condition A, and the quasi-
contingency qc(P, e) # L x K, int qc(P, e) # &, then any isotonic homeomorphic map f is
quasiaffine.

Proof. According to Theorem 6, f(Cy) = Cf(x), whereC = qc(P, e), for any point x
LP. By Theorem 5, C does not contain g-lines, C # L x K, soby Theorem 1 f is gquasiaffine.
Theorem 7 is proved.

(6.4). Remark. As follows from [3], the similarity in the description of isotonic
homeomorphisms in Euclidean and hyperbolic spaces is due to a common property of the Lie
algebras of an Abelian group and the group of motions T, considered in the paper. Hence,
the results of the paper and also the results of A. D. Aleksandrov {1] can be recounted
in the single language of the theory of ordered Lie groups.
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HARDY—LITTLEWOOD THEOREM IN DOMAINS WITH QUASICONFORMAL BOUNDARY
AND ITS APPLICATIONS TO HARMONIC FUNCTIONS

M. Z. Dveirin UBC 517.53

In the theory of functions of a complex variable the theorem of Hardy-Littlewood (cf.,
e.g., [1, p. 74]) on the connection between the smoothness of a function, analytic in the
unit disc, and the growth of the modulus of its derivative upon approximating the boundary
of the disc and also the theorem of Privalov [2] on the smoothness of conjugate harmonic
functions in the disc are well known. These assertions have been generalized by a number
of mathematicians {1, 3-6]. In particular, the Hardy-Littlewood and Privalov theorems have
been extended to domains of the complex plane other than the disc. The latest results in
this direction are due to Johnston [7], who found the analog of the Hardy—lLittlewood theorem
for domains with locally Lipschitz boundary, and V. A. Borodin [8], who extended Privalov's
theorem to domains with piecewise-smooth boundary without null corners. In the present
paper analogs of the theorems cited above are found for domains with quasiconformal boundary.
With their help we prove a theorem on the rate of approximation of harmonic functions by
harmonic polynomials. This question was also investigated previously; theorems on the rate
of approximation of harmonic functions are due to Walsh, Sewell, and Elliott [9] (the
boundary of the domain is an analytic curve), V. K. Dzyadyk [10] (smooth boundary), and
V. A. Borodin [8] (piecewise-smooth boundary).

We introduce the notation and definitions needed. Let G be a simply connected finite
domain with Jordan boundary L and complement £ ; w = @ (z) be a function which maps the
domain G conformally and univalently onto K, = {w: w| < 1}, where the inverse function z =
¥(w) is normalized by the conditions ¢(0)=a, aecG, $(0)>0; L ={z lo@)l=r re; 1),
is the r-th level line of the function ¢; the function w = ¢(z) maps the exterior of the
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