
Since T~ is complete and recursively axiomatizable, by a theorem of Janiczak [5] it is 

decidable. 
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MAPPINGS OF AN ORDERED LOBACHEVSKII SPACE 

A. K. Guts UDC 513.812 

We consider n-dimensional Lobachevskii space L n, n ~ 2 in which there is given an 
ordering, which is invariant with respect to some simple transitive subgroup T of the group 
of motions. We pose the problem of the complete description of isotonic homeomorphisms 
f: L n + L n (i.e., f and f-l are monotonic). In Euclidean space the analogous problem is 
solved in A. D. Aleksandrov [i]. 

The results of the paper were announced in [2]. 

i. Definitions and Notation 

(i.I). Geometrically, the introduction of an order in L n is the assignment to each 
point x ~ L n of a set Px c L n satisfying the conditions: I) x ~ Px; 2) if y ~ Px, then 
py c Pz; 3) for x ~ y we have Px ~ Py. Then writing the relation y ~ Px as x ~ y we get 

partial ordering in L n. 

The invariance of the order with respect to the group T is understood as follows: If 
t ~ T, then t(Px) = Pt(x) for any point x~ LL 

In L n we fix a point e, and if M is any set in L n containing the point e, then M x de- 
notes the set obtained from M with the help of the motion t ~ T, carrying e into the point x. 

A bijective map f: L n ~ L n of the ordered set L n is said to be isotonic, if for any 
point we have f(Px) = Pf(x)- It is easy to verify that a bijection f is isotonic if and only 
if f and f-1 are monotonic; i.e., if x ~ y, then /(x)~/(y) and /-J(x)~/-~(y). 

(i~2). Let x I .... , x n be rectangular Cartesian coordinates in the Euclidean space R n. 
By the Poincare model of Lobachevskii space we mean the half-space {x ~ R~: x~ > 0},, in which 
the Lobachevskii metric is given by the following differential form: 

ds ~ = k  2 ~=1 , k = c o n s t : / : O .  

The group T consists of transformations t of the form 

(x, . . . . .  x~) ~ (~x~, ~ x ~ +  a~ . . . . . .  ~x~ + a~_l),  

where X > 0, az, ..., an_ I are real numbers, and is a solvable, noncommutative Lie group. 
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Let s be a line, passing through the point e. We denote by A the set of all lines 
parallel to the line s (in some given direction). Let v be an arbitrary two-dimensional 
plane, passing through the line s By the symbol ~v we denote the set of all equidistant 
curves lying in ~ and corresponding to the line s We also introduce the set ~w of 
all horocycle lying on ~ and orthogonal to s in addition, if h ~ ~ is a horocycle, 
then h, considered as the limit of circles, is characterized by the fact that the 
centers of the circles cited are taken on the ray s c s which, starting from some point, 
goes in the direction in which the family of lines A is parallel. 

We assume further that A is represented in the Poincar~ model by the coordinate lines 
x I. Then to the elements of the sets ~ and ~ correspond Euclidean lines (more precisely, 
intersections of Euclidean lines with {x ~ R~: xl > 0}). 

We denote by Z the set of all elements gotten from elements of the set Z~A U ~ U ~ 
taken for any plane ~, s c ~ with the help of the group T. I.e., if ~ ~ I then there exist 

I 
t ~ T and an element ~' ~ Z~ such that a = t(a'). One can write symbolically 

r 

We shall call the elements of the set Z quasilines (for short, q-lines). In the usual 
way, from quasilines one can get q-rays, m-dimensional q-planes, etc. In the Poincare model 
the intersection of any Euclidean line with the half-space {x i > 0} is some q-line. 

By a q-cone C with vertex at the point e we mean a set which, together with each point 
x, contains the whole q-ray starting at e and passing through x. 

A set A c L n is called q-convex, if along with any two points x and y of it, it con- 

tains the whole q-segment with ends x and y. 

By g(x, y), x ~ y we denote the q-line passing through the points x and y, and by 
s y), the q-ray starting from the point x and passing through the point y. We denote 

the quasisegment with ends x and y by Ix, y]. 

(1.3). We call sets A, B c L n T-parallel, if there exists a motion t ~ T such that 
t(A) = B. We say that the family of T-parallel sets {M~:x ~ ,L ~} is preserved under the 

map f: L n + L n if f(M x) = Mr(x) for any X~L ~. 

(1.4). We denote by [A[ the object corresponding to the object A c L n under its repre- 

sentation in the Poincare model. Thus, [L~[= {(x ...... x,,)~R~: x~>O}. We set H = {x i = 0}. 

(1.5). If A c L n then by int A, A, 8A we denote respectively the interior, closure, 

and boundary of the set A. 

(1.6). Definition of q-cone L • K. Let L be a q-ray issuing from e, K be a q-cone 
with vertex e, where L and K do not lie in one q-plane and L N K = {e}. We extent ILl, 
IKI in the natural way in R ~ to a (Euclidean) ray [. and cone K, respectively. Then by 
L x K we shall mean the set such that IL x K] = ]Ln[ N (F. x ~). The set L x K is a q-cone 
with vertex e, and it can be defined without resorting to the Poincare model. 

In fact, 

L x K = U l+ (e, x), 
x-~ A 

where A =  lJ Lx. 
x ~ K  

(1.7). We shall call a map quasiaffine, if it maps any q-line to a q-line. 

Obviously the group T consists of quasia~fine motions. 

2. Quasiconical Orders 

(2.1). It is easy to see that a q-convex quasicone C defines an invariant order in 
L n, i.e., the family of sets {C~: z~JI ~} generated by it satisfies conditions 1-3 of (i.i) 

in Sec. i. We consider three cases: 

1) .U:#L><K;  
2) C = L X K; 
3) C = / = L X K ,  but C = L X K .  
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These three cases exhaust all possibilities which arise in the study of quasiconical 
orders. The corresponding isotopic homeomorphic maps f are studied in Secs. 3-5. It follows 
from these sections that in the typical (first) case the map will be quasiaffine. The other 
two cases are exceptional and the corresponding maps can be rather arbitrary~ but neverthe- 
less well described. 

(2.2). Isotopic maps f of general orders, i.e., ones which are not quasiconical, will, 
under specific conditions, preserve certain orders, defined by a q-cone, and consequently 
in the "typical" case will be quasiaffine [2]. How to do this is shown below in Sec. 6. 

(2.3). We note an important fact, frequently used in the course of the proof of 
theorems. If {TFf=: x~E} is some f~mily of sets, where M c E is either a q-cone or a union 
of q-lines, then to study the maps f: E ~ E preserving the given family, it makes no dif- 
ference whether E is the Lobachevskii space L m, m > i or a quasiplane which is not a horo- 
sphere. 

In fact, it is easy to see this by passing to the Poincare model~ 

3. Ma~ f in the Case of a Qu@sicone C ~ L • K 

We assume that int C # 6. 

(3~ THEOREM i. If an order inL n, n ~ 2 is given by a q-cone C, such that 3C does 
not contain a q-line and C ~ L x K where L is a q-ray and K is a q-cone of lower dimension, 
then any homeomorphic isotonic map f is quasiaffine.* 

We preface the proof of the theorem with the following lemma. 

LEMF~ i. Let o be an open half-plane, lying in the affine plane �9 and {~: x~] (i = 
i, 2, 3) be three dSfferent families of parallel lines in T. If f: o + o is a homeomorphism 
such that f(L~) L~(x) , where ~ = L~=o n Ix, x~o,t=i, 2, 3, then f is affine. 

Proof. For a 2-plane o this result is proved in [i, p. 12]. Let o be a half-plane. 
We denote by H the boundary of o. We extend f to H. Let us assume that L~, L~ are half- 
lines. We extend L~, L~ to H in the natural way. Let {z} = L~ N L 2 and z ~ H. Then 
, L ~ Y L](~) ~ /(y) N H ~ ' .  In fact, let us assume that L)(~)n = Lf(g) n H = ~. The half-lines L~(x) 

and L~(y) bound a domain U such that one can find a point a ~ U, for which L~, L~ c U, 

P a s s i n g  t o  p r e i m a g e s ,  we n o t e  t h a t  

which contradicts (i). Thus, L~(x) N L~(y) = {z'} and z' ~ H. Then by definition let 

f(z) = z' Thus we get a continuous and bijective extension of f to H. Let L~, L~, where 
lal = (0 .... , 0), be taken on the coordinate axes ~, D, and the rays f(L~), f(L~) on the 
coordinate axes ~', q' in the image. On L~ we take a point b. Through it we draw lines 
~, ~. Through the points of intersection ci, c2 of these lines with k~, ~ we draw lines 

~c~,a ~c2,~ etc. We shall have on o an integral lattice {(n~, m~): n, m integers}. Since 
the map f carries parallel lines into parallel ones, the construction is preserved. Con- 
sequently, f({(n~, m~)}) is the integral lattice {(n~', mB'): n, m integral}. If f(~, ~) = 
(fi(g, ~), f2(~, n)), then fi(g, N) = fi($), f~(~, ~) = f2(~), f~(n~) = nfi(~) = n~', 
f~(mS) = mf=(B) = mB'. This is true for any a, B. Hence, taking ~, 8 + 0 and keeping in 
mind that f is continuous, we get: f is affine. 

Remark. The lemma remains valid if we assume that f maps three families of lines (in 
general position) to three analogous families of lines. The proof of this fact differs 
inessentially from that given above. 

Proof of Theorem I. Since f is a homeomorphism, we shall assume that C = C, i.e., 
C is a closed quasicone. 

(a) In our notation C- = {x~ L~: x ~ e}, where ~ is_the order given by the q-cone C. 
If f is an isotonic bijection, then obviously f(C~) = Cf(x). We consider the doubly super- 

�9 In [2] we erroneously said "isometric". The latter is valid under additional conditions 
imposed on C. 
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ficial q-cone Q = 8C 0 ~C-. Let I be an arbitrary q-line passing through the point e and 
lying on Q. In the Poincare model I is represented by a Euclidean line which can have a 
point of intersection with the hyperpiane H= {x ~ R~: z~,=0}. Let x, y ~ ~ and x ~ y. 
We shall say that the q-ray L+(x, y) is free, if its representation in the Poincare model 
does not intersect the hyperplane H~ 

Let now y be a point on the boundary 8Q x such that the q-ray .~+(x, y) is free. Let 

and 

M~= UCf{~l+(x,y)}, if l+(x,y)~OC~, 

M~y= UC~{z~_l+(x,y)], i f  l+(x,Y)~OC~. 

If Mxy happens to be a q-half-space, then �9 = ~Mxy is the q-tangent q-plane of the quasi- 
cone C~ at the point x and at the same time (by symmetry) q-tangent to the q-quasicone C x 
at the point y. Conversely, if at y the quasicone C x has q-tangent q-plane ~, then �9 = 
~Mxy when the ray ~+(x, y) is free, and ~ = 8Mxu, where u~ l(x, y)\l+(x, y), when ~+(x, y) 
is not a free ray. 

In general Mxy is represented in the Poincare model by a convex cone which is a di- 
hedral angle containing the line passing through the_points x and y. Let Rxy be a q-plane 
of highest dimension passing through x and lying in Mxy. 

If Muv is defined, then as is easy to verify, Muv = Mxy if and only if u, v E R x . Con- 
sequently, Rxy is the set of all u for which there exist points v such that Muv = ~xy" 

Consequently, the sets Mxv and Rxy are defined only in terms of the order and topology. 
Hence, they are preserved under a continuous map f such that f(Mxy) and f(Rxy) have the 
same meaning. 

As we explained above, the quasicone C x has a q-tangent q-plane �9 at the point y, if 
and only if there exists a point u, possibly equal to y, such that �9 = 8Mxu. Hence Rx, a = 
8Mxu. The homeomorphism f preserves this equality, which is the condition defining the 
q-tangent q-plane. Hence, to q-tangent q-planes of quasicones C x correspond q-tangent 
q-planes of quasicones Cf(x) and conversely. 

(b) q-Tangent T-parallel q-planes ~i, ~2, Tz = t(~l), where t ~ T, are mapped to q-tan- 
gent T-parallel q-planes ~ and r~ respectively, for which there exists a t' ~ T such that 
' = t'(~) (in the Poincare model, the q-planes ~, ~z and ~ ~ are pictured as pairs T 2 

of parallel planes I~iI, I~21 and I~I, IT~I). The converse is also true. 

First let us assume that T~ = t'(~{). We show that ~2 = t(T1)" 

= f-1(~{), In fact, the q-planes z~, ~ do not intersect. Hence their preimages l 
�9 2 = f-l(~) do not intersect. If ~l is pictured in the model plane by a parallel of the 
hyperplane H, then obviously so is ~2, i.e., ~2 = t(T1) for some element t ~ T. In general, 
if ~2 w t(~1) then the q-planes ~z and ~ bound a q-convex closed domain U such that if 
x ~ U then either C x c U or C~ c U. For definiteness let the first inclusion hold. Since 
T~flTz=~, one can find points u ~ ~I and v ~ T 2 such that C~NT2=~ and C~0T~=~. 
Then CI(~)n T~= ~ and C~(~> ~ ~ ~ ~. But since ~ = t ~ (~), at least one of these equations 
is false. We have found a contradiction. Consequently, ~ = t'(~) implies ~ = t(~). 

Now let ~2 = t(~z). We set ~ = f(~z), ~ = f(~2). To be definite, we assume that 
~ is q-tangent to C x and ~z to Cy. Then ~r is q-tangent to Cf(y) and there, exists, ,a 

q-plane t'(~) q-tangent to Cf(x). As was established above, to the quas~plane t (~m) 
corresponds the q-plane ~2- But then f(~) = t'(~) = ~. 

Thus, the conditions ~ = t(~), ~ = t'(~) imply one another under the homeomorphism 

f. 

(c) The q-tangent q-planes of the quasiconic C bound it. Hence one can take n q-tangent 
q-planes ~i (i = i, ..., n) bounding the n-faces of the quasiangle V. Since under the map 
f the q-tangent q-planes go into q-tangents, and T-parallels into T-parallels, the edges 
of the quasiangles V x too go into edges of the quasiangles Vf(x) which are compatible with 
the help of the group T. We take any edge L of the quasiangle V. The quasicone C has 
q-tangent q-planes which differ from ~i since otherwise C = V, i.e., ICI would be a Cartesian 
product. All such q-tangent q-planes cannot pass through the edge L, because if they did, 
one would have C = L x K. Hence there is a q-tangent q-plane �9 not passing through the 
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edge L and differing from the q-plane ~i opposite to it. Hence, besides L there is at 

least one more edge N, not contained in ~. The quasiplane o spanned by L and N intersects 
in a q-line S = o N T. Thus, we have on o three families of q-lines, T-parallel respec- 

tively to L, N, and S. 

Under the map f the q-lines which are T-parallel to L and N go into T-parallels. Hence 
the q-planes o x go into two-dimensional q-planes ~ the q-tangent q-planes ~x go into 
q-tangent q-planes ~f(x), so that the q-lines S x = o x n ~x go into the q-lines Sf(x) = 

~f(x) n ~f(x).  
I f  one  now makes use  o f  t h e  P o i n c a r e  model ,  t h e n  iOxi ,  I~x[ a r e  a f f i n e  h a l f - p l a n ~ s  ( o r  

planes), and {Inxl, INxI, ISxl} are three families of parallel half-lines (lines), mapped 
onto the corresponding three families of parallel half-lines (lines) {ILf(x)l, INf(x)i, 

Igf(x)l}. 
It is easy to see that if o is a half-plane, then If(o)I = Iol is also a half-plane. 

Applying Lemm i, we see that If is affine on o in the Poincare model, and consequently, 
the original map f is quasiaffine on the q-plane o. 

The map IfI maps lines lying in Iol and parallel to H to lines parallel to H. In our 
arguments the edge L was chosen arbitrarily. In all there are n edges of the quasiangle V. 
Hence each of them lies on some two-dimensional q-plane on which f is quasiaffine. 

Among these q-planes one can take (n--l) q-planes oi~ .~., On_ i such that the lines 
passing through the point e, lying in IqiI and parallel to the hyperplane H, are in general 
position. Let them correspond to the q-lines k L .... , An_ z . By what was said above, 

IfI(Ikixl) = Ikif(x) I,where Ikil are lines parallel to the hyperplane H. Without loss of 
generality we assume that the edge ILl is not parallel to H. We take the lines ILl, IXii 
(i = 1 ..... n - i) as axes of an affine coordinate system in the half-space ILnl = {x i > 0}. 
Since Ifl is affine on these axes, Ifl is affine in ILnl. But then f is quasiaffine in 
L n. Theorem 1 is proved. 

THEOREM-I v . The assertion of Theorem 1 remains valid if we assume that f(c) is a 
quasicone, and f(C x) is gotten fromf(C) with the help of the group T for any z~ L ~. 

The proof of Theorem i' does not differ from the proof of Theorem !. 

4. The Case C = L • K 

In what follows we shall need 

(4.4). LEMMA 2. If f: L n +L n (n ~ 2) is a homeomorphism, preserving the family of 

q-lines {N~,: x~ L ~} (f~1, ..., n) (i.e., f(Nix) = Nif(x ) for any x ~ L n (i = 1 ..... n)), 
which is the identity on q-lines Ni, ..., N n passing through the point e and in general 
position, then f is the identity on L n. 

Proof. If among the q-lines N i .... , N n there exist (n - i) lines which are a horocycle , 
then the assertion of the lemma is obvious (cf. the end of the proof of Theorem i). Hence 
we assume that there are not such q-lines. We denote by Q the q-hyperplane spanned by 
NI .... , Nn_ z. Further, in the natural way we complete IQ and INnl to a hyperplane and a 
line in R n, but we leave the notation unchanged, i.e., iQ and INtl. By hypothesis Q is 
not a hyperhorosphere, i.e., IQ! is not parallel to H. If N n is a horocycle~ then we set 
U = ILn!. Now we define the domain U when N n is not a horocycle. Let I$~I be thehyper- 
plane obtained by taking the union of all lines INnxl such that IN~i NHNrQf~ and Io2[ 
coincides with some IQy I such that rQ~IN HNIN~] ~. We denote by U c hn| the closed do- 
main bounded by the hyperplanes loll, 1o21. 

The rest of the proof is by induction on the dimension n. 

A. n = 2. Let x ~ int U, so N,~ n N2~ and N~ A N~; hence since f is the iden- 
tity on Nz, N 2 it follows that f(x) = x, i.e., f is the identity on int U, and hence also on 
U. 

We take x ~ U. Then either N~N N2 ~ ~, or N~ n N, ~ ~. To be definite we take the 
first; the second case can be considered analogously. Since f is the identity on N 2 f(x) 
will lie on Nix by virtue of the fact that f(Nix) = N~x. Let {a} = IN~xl N H and b ~ N~ 
be such that INzb] N H = {a}. There exists a sequence {bm} c N 2 for which bm ~>b and 
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N~bm n N2~=/=~ (re=l,2 .... ). Since f(b m) = b m, f(b) = b, one has f(Nlb m) = N1bm, f(N1b) = 

N1b , so /(N2~)NNI~m--/=~, re=l, 2~... , j(N=~)nNib=Z. It follows from this that f(N2x) = N2x , 
i.e., {x} = Nix n N2x remains fixed under map f. Thus the lemma is proved if n = 2. 

B. Let the lemma be valid for dimension k ~ n - 1 and suppose we are in the case k = 
n. Then in the half-hyperplane IQ[ there will be a family of preserved q-lines {Ni~: x~Q} 
(i = i, ..., n - i), while f(Q) = Q. Since the consideration of L n-1 reduces (cf. point 
(2.3)) to the study of the half-space [Ln-11, one has that [Q[ does not differ in this from 
ILn-ll and one can use the induction hypothesis, considering f to be the identity on Q. But 
then it is easy to conclude that If[ is the identity on U c ILn[. Now let x ~ U. We take 

the q-plane S spanned by Nix, Nnx. Since S goes, under the map f, into the q-plane S' 
spanned by Nil(x), Nnf(x ) and S n Q ~Z, and f is the identitY on Q, one has f(S) = S, i.e., 
S' = S. On S, f preserves the two families of q-lines {N~: x,~ S}, {N~:.x~ S}. Since upon 
reducing consideration from S to ISI, ISI in no way differs in the present situation from 
L 2 , one can use the assertion of point A, i.e., assume it proved that Ifl is the identity 

on S and hence f(x) = x, i.e., f is the identity on L n. The lemma is proved. 

(4.2). Definition of displacement. Let L be a q-ray issuing from e, and E be a q-hyper- 
plane containing the point e, and L n E = {e}. Let us assume that either N is a horocyc!e, 
where N is a q-line containing L, or E is a hyperhorosphere. Then we have 

Definition i. A displacement of the first kind dEL is a homeomorphism of L n, n ~ 2 to 
itself such that 

i) dEL is an (arbitrary) homeomorphism on N; 

2) for any point x ~ L n we have dEL(L x) = LdEL(X), dEL(E x) = EdEL(X); 

3) dELIE is a motion from T (i.e., under the condition dEL(e) = e the displacement dEL 
is the identity on E). 

It follows from the definition that dEL maps any q-line, T-parallel to the q-plane E, to 
another such. Now let L I, L 2 be two different q-rays, issuing from the point e, NI, N 2 be 
q-lines containing them respectively, which are not horocycle, E l be a q-hyperplane passing 

through N 2 and E I n L I = {e}. Then we have 

Definition 2. A displacement of the second kind dEILIL2 is a homeomorphism of L n, n 

2 to itself such that 

i) dEILIL2 is an (arbitrary) homeomorphism on Nl; 

2) for any x ~ L n we have 

dE1L1Lz (L~) = LjdE1L1L~ ) (] = i, 2), dE1L1L 2 (E,~) = E,~E1L1L2(~); 

3)  dE1L1L21U 1 i s a  m o t i o n  f r o m  T, w h e r e  

U U l :  El ~ U Nix, E~O/EIx~NI~zEIx ] 
m~E~ 

( i . e . ,  u n d e r  t h e  c o n d i t i o n  d E 1 L 1 L 2 ( e )  = e t h e  m o t i o n  dEILzL2 i s  t h e  i d e n t i t y  on U1 o r  

dE1L1L2[U 2 = i d u 1 ) .  

LEMMA 3. I f  d i s  a d i s p l a c e m e n t  o f  t h e  s e c o n d  k i n d  dE1LIL2 s u c h  t h a t  d ( e )  = e ,  t h e n  

I) d(E I) = El, d(N1) = NI, d(E~) = E~, d(U I) = U l, d(S I) = S I, where S,=a / U i,~; 
) 

2) d preserves the families {E~x}, {U1x}, {Six } and the family of (n - 2)-dimensional 

q-planes {~ix}, where ~lX = Six n E1x; 

3) d preserves the family of q-lines {Nx} provided N x c ~x, i.e., d(N x) = Nd(x) for 

any point x~L ~. 

Proof. Assertions 1 and 2 are obvious. We prove 3. We take a point x ~ L n arbi- 
trarily. If x ~ U~, since N x c ~x c U~ and dlu ~ = idu~, one has d(N x) = N x. If x~Ei\U,, 
then N x = ~x ~ ~ where o x is the two-dimensional q-plane spanned by L~x and N x. But 
o x 0 ~ is a q-line, T-parallel to N x (and fox ~ ~I is parallel to H), preserved under the 
displacement d, since it lies in U1. Since d preserves the family {L~: z~L ~} by Definition 
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2, it preserves the q-plane Ox, or more precisely d(o x) = ~ But then d preserves Nx, 
because d(N x) = d(~ix) N d(o x) = ~Id(x) N o x isaq-line, T-parallel to the q-line N x, Joe., 
the line Nd(x). 

Now let x ~ E l . Then N x = Nix N ~x, where T x is the two-dimensional q-plane spanned 
by Nix and N x. Either Nix N E l ~ Z, or N,~NEI=~. If NI~DEI~ then '~x N E l is a 
q-line, T-parallel to Nx, lying in El, and consequently, preserved under the displacement 
d, as was proved above. But then it follows from the preservation of ~x N E l and the 
preservation of the family {N~z: z ~ ~} under the displacement d that d(~x) is the two- 
dimensional q-plane, T-parallel to T x. But then d(N x) = d(~ix N T x) = ~Id(x) N d(~ x) is a 
q-line, T-parallel to Nx, or d(Nx) = Nd(x)~ Finally, if NI~NE~.=Z , we have 

where N z is such that N~~N E ~  (here one uses the fact that N2is not a horocycle). Since 
as was just proved d(N z) = Nd(z) and also the families {Nzy: y~L ~} and {~: y~L ~} are pre- 
served, we conclude directly that d(N x) = Nd(x). Lemma 3 is proved. " 

Remark. Assertions 2 and 3 of Lemma 3 remain valid without the condition d(e) = e. 

(4.3). Let f: L 2 + L 2 be a homeomorphism such that f(Nix) = Nif(x ) (i = i, 2)~ f(e) = 
e, where NI, N 2 are two different q-lines, which are not horocycles and pass through the 
point e. 

Each N i is the union of two q-rays n i and L i = (Ni\n i) U {e} of which L i is a free ray 
(cf. the beginning of the proof of Theorem i). If x ~ hi, then f(x) ~ nio In fact, to be 
definite let x ~ hi. If IN2xl N INI~I N H is a point (IN2xl, INlzl extend naturally to 
lines in R=), then |N2f(x) I N IN1f(z)I N H is also a point, as is shown in Lemma I. From 
this it follows that if f(x) ~ LI, then N,i(~NNz= Z. The latter contradicts the fact 
that N~N N2 ~ ~. Hence f(x)~n~. 

Knowing how f acts on nl, it is easy to determine the action of f on n 2. In this 
sense the actions of f on Nl, N 2 are dependent. In fact, if x ~ nl, then f: IN2xl ~ H 
IN~f(x)!N H. Hence if y ~ n 2 is such that iNlyl N H = !N~x ! N H, then INif(y)I N H = 

IN2f(x) l N H. In other words, the latter equation determines the location of the point 
f(y) on n~ which depends on the point f(x). 

(4.4). THEOREM 2. Let C = L~ • L2, where Lx, L 2 are different q-rays, issuing from 
the point e, let the order in L 2 be such that 8C does not contain a q-line. Then any C-iso- 
tonic homeomorphism f can be represented in one of the two forms: 

f=f0od~ ~ od~o~_ (2) 
o r  

f = fo~176 (3)  

where  f0 i s  a q u a s i a f f i n e  t r a n s f o r m a t i o n .  In  a d d i t i o n ,  t h e  d i s p l a c e m e n t s  in  (2 )  and (3)  
commute. In  (2 )  t h e  d i s p l a c e m e n t s  o f  t h e  second  k i n d  a r e  n o t  i n d e p e n d e n t  ( c f .  ( 4 . 3 ) ) ,  and 
t h e  d i s p l a c e m e n t  in  (3 )  i s  c o m p l e t e l y  a r b i t r a r y .  

Proof. Since f is a homeomorphism it has the property that the edges L~x , L~x of the 
q-cones C x map to edges. Obviously there exists a q-affine bijection f0: L~ § L~ such 
that ]$~(f(L~x))=L _~ (i=L~, (f$l~ Hence if g = f~lof then g(e) = e, g(Cx) = 

ifo (/(xD 

Cg(x ) and g ( L i x )  = L i g ( x  ) ( i  = 1, 2) f o r  any p o i n t  x ~ L~, I t  r ema ins  t o  show t h a t  g can 
be represented as a composition of two displacements of the same kind. 

A. First let us assume that N~ is a horocycle~ We take a displacement d~ = dN=L~ 
such that 

Then h~ = d~~ has the following property: 

i.e., is the identity on N~. Since d~ preserves the families of lines {N~: x~L~}, {Nz~: x.~ 
L~}, one has that h~ will be a C-isotonic homeomorphism. Now let d= = dN~L2 be a displace- 
ment such that 

353 



d2 IN~ = hi Ix 2, d2 (e) = e. 

Then i f  h 2 = d ~ l o h l  t h e n  

h2 I-~2 = idN2. ( 5 )  

But  d 2 p r e s e r v e s  t h e  f a m i l i e s  {Nix} and  {N2x} a n d ,  m o r e o v e r ,  i s  t h e  i d e n t i t y  on N 1. 
From t h i s  i s  f o l l o w s  t h a t  h 2 p r e s e r v e s  t h e  f a m i l i e s  {Nix} ,  {N:x} and  by ( 4 ) ,  

h2 l~- 1 = i d s l .  

H a v i n g  ( 5 )  and  ( 6 )  i n  m i n d ,  we c a n  a p p l y  Lemma 2 t o  h 2. 
d l ~  o r  f = f 0 ~ 1 7 6  T h a t  d l ,  d2 commute  i s  o b v i o u s .  

B. Now let the q-lines N l, N~ not be horocycles. 
of displacements of the second kind. 

The actions of the displacements of the first kind dN,L2, dN~L~ on N~, N 2 respectively 
are comletely independent, which cannot be said of g and t~e displacements of the second 

kind dN~L~L~, dN~L~L . This is discussed in point (4.3). Let d~ = dN~L2Lz be a displace- 
ment such t~at 

d l  IN2 = g IN~., d~ (e) = e. 

Then h~ = dz-~~ has the following properties: 

h~ [X~_ = i d ~  ( 7 )  

and  i t  p r e s e r v e s  t h e  f a m i l i e s  o f  l i n e s  {Nrx },  {N2x},  i . e . ,  i s  a C - i s o t o n i c  h o m e o m o r p h i s m .  
By v i r t u e  o f  t h e  d e p e n d e n c e  o f  g and  d~ on n~ ,  n~ m e n t i o n e d  a b o v e ,  we g e t  t h a t  d ~ l n ~  = g l n ~  
o r  

h~ 1~, = ida , .  ( 8 )  

Now let d2 = dN2LIL2 be such that 

(6) 

We get that h 2 = idL2, i.e., g = 

Then g has a representation in terms 

d 2IN l = h  i[N1, d ~ ( e ) = e .  ( 9 )  

Then i t  f o l l o w s  f r o m  ( 8 )  and  ( 9 )  t h a t  

d21n 1 = id~ 1, d21% = i d % . .  ( 1 0 )  

The l a t t e r  i s  v a l i d  a g a i n  by  v i r t u e  o f  t h e  d e p e n d e n c e  o f  t h e  a c t i o n  o f  d 2 on n~ and  n 2. 
S i n c e  by  D e f i n i t i o n  2 d 2 i s  t h e  i d e n t i t y  on U z = N 2 \ n 2 ,  i t  f o l l o w s  f r o m  ( 1 0 )  t h a t  

d2lx~ = idN 2. (Ii) 

As a result, the homeomorphism h 2 = d~l~ has the following properties: it preserves 

the families {Nix}, {N2x} and by (7), (9), and (ii), 

h ~ ] N l = i d N  1, h 2 1 N ~ = i d y  2" 

But then by Lemma 2 we get that h 2 is the identity on L 2 so f = f0~176 The commuta- 

tion of d I, d 2 is obvious. Theorem 2 is proved. 

(4.4). Suppose given in L n, n >~ 2, an order C = Ll • ... • Ln, where int C ~ ~. Here 
L i (i = i, ..., n) are q-rays issuing from the point e. As before, we denote by N i the 

q-line containing the q-ray Li, and by E i the q-hyperplane spanned by N I, ..., Ni- I, Ni+ I, 

�9 ..~ N n �9 

Lemma 4. Let ]: L~-+ L ~, n~3, be a homeomorphism such that f(Nix) = Nif(x ) (i = i, 
..., n) and the q-lines NI, .... N n are in general position and are not horocycles. Then 

f is quasiaffine. 

Proof. For n = 3 we consider, on the q-plane El, the three families of lines {N2x}, 
{N3x}, and {E I ~ Six}. By hypothesis the map f is such that f(e) = e, and without loss 
of generality we can assume it has the property f(E l) = E l and preserves the cited families 
of q-lines. Then by Lemma i, f is quasiaffine on E l and hence on N 2 and N 3. From the 
symmetry of the q-lines N~, N2, N 3 in our investigation, we conclude that f is also q-affine 

on N~. One can find a q-affine transformation f0 such that f01Ni = fiN i (i = i, 2, 3). 

Hence if g = f~1of, then giN i = idNi (i = i, 2, 3). By Lemma 2, in this case g is the iden- 

tity on L 3, i.e., f = f0- The case n = 3 is proved. 
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In general it is easy to see that f is q-affine on each q-line Ni, because each such 
line can be included in the three-dimensional q-plane o spanned by the three q-lines Ni, 

Nj, N k. Since the study of Ioi does not differ (cf. (2.3)), in the direction of interest 

to us, from the study of [L~I we see, just as above, that f is q-affine on o and[ hence also 
on N i. From here on we argue just as in the case n = 3. Lemma 4 is proved. 

THEOREM 3. Let /: L~-~L ~ (n ~ 3) be a C-isotonic homeomorphism, where C = L l • ... • 
L n and 8C does not contain a q-line; then 

i) if all N i (i = 1 .... , n) are not horocycles, then f is quasiaffine; 

2) if only Nl, N 2 are not horocycles, then 

/ = /0 o ~E!LIL2= dE2LzLI o dEaLs ..... d~L n ; (12) 

3) if N I .... ~ N k (k ~ 3) are not horocycles, and Nk+ l ..... N n are horocycles, then 

/ = ]oodEh+lLk+l ..... dEnLn; (13) 

4) if only N l is not a horocycle, then 

] = /0o dElL1 . . . . .  dEnLn. (14)  

Here  f0 i s  a q u a s i a f f i n e  t r a n s f o r m a t i o n ,  a l l  the  d i s p l a c e m e n t s  in  ( 1 2 ) - ( 1 4 )  commute.  In  
addition, any displacements of the first kind are admissible, and for the displacements of 
the second kind one should consider point (4.3). 

Proof. The map f maps each family {Nix } to some family {Njx }. In fact, each Nix is 

the intersection of the q-planes E1x , "'', El-l, x, Ei+~, x, ..., Enx, which are q-tangent 
to Cx. Since f maps q-tangent q-planes to q-tangent q-planes (cf. the proof of Theorem i), 
we conclude directly that f(Nix) = Njf(x ) for any point x~ LK 

One can find a quasiaffine bijection f0: Ln ~ Ln such that if g = f~l of, then 

g(N~)=N~!~ ( i= t~ ..., n), g(e)= e. 

Case  1. A c c o r d i n g  t o  Lemma 4,  t h e  map g i s  q u a s i a f f i n e ,  so  f i s  a l s o .  

Case  2. L e t  d 1 = dEzL1L~ be  a d i s p l a c e m e n t  h a v i n g  t h e  p r o p e r t y  t h a t  

~IN~ =g lN~  o 

Then h 1 = d[Zog i s  t h e  i d e n t i t y  on Nx, and by t h e  d e p e n d e n c e  o f  t h e  a c t i o n  o f  g and d ! on NI ,  
N 2 we get that 

h~l~ 2 = id%, (15)  

where we have used the notation of the proof of Theorem 2. In accord with Lemma 3 and Defi- 
nition 2 the displacement d I preserves the families of q-lines {Nix } (i = 1 .... ~ n). Hence 

hl also preserves them, i.e., h I is a C-isotonic homeomorphism. Let d 2 = dE2L2LI be a dis- 
placement such that 

(16) 
Then by Definition 2 and Lemma 3, the displacement d 2 is also C-isotonic and preserves the 
families {Nix } (i = 1 ..... n) and in addition, by the dependence of the action of d 2 on 
N I, N 2 we get from (15) and (16) that 

d2[~ l = id~1. 

Since d 2 is the identity on U 2 ~ N1\n I one has that d 2 is the identity on N I. Hence if 
h2 = d[lohl, one has 

h ~ l N 2 = i d ~  ~, h2[N~=idN1. 

Moreover, h 2 preserves the families {Nix ) (i = i ..... n). We take a displacement d 3 = 
dE3L3 such that 

~ l~s = h2 iN3. 
Then it follows from Definition 1 that if h 3 = d~loh2, then h= preserves the families {Nix% 
(i = 1 ..... n) and - " 

h sIN j = i d ~ )  ~ = t , 2 , 3 ) .  

Continuing this process, at the (n - 2)nd step we take a displacement d n = dEnLn such that 
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d~ Ix ~ = h~_ I IN ~. 

And then for hn = d~1ohn-~ on the basis of Definition I, 

h ~ ] N j = i d x j  ( ] = t ,  2 . . . . .  n). 

By Lemma 2 we g e t  hn  = i d L n ,  i o e . ,  ( 1 2 )  h o l d s  f o r  f .  

Case  3. L e t  o be  t h e  q u a s i p l a n e  s p a n n e d  by N1, . . . ,  N k .  Then g ( o )  = o s i n c e  g i s  a 
homeomorph i sm,  and  i n  v i e w  o f  Lemma 4,  t h e  map g i s  q u a s i a f f i n e  on o. Now l e t  f l  be  a 
q u a s i a f f i n e  map w h i c h  c o i n c i d e s  w i t h  g on o and  p r e s e r v e s  t h e  f a m i l i e s  {Nix } ( i  = l . . . . .  
n ) .  Then  h = f ~ l o g  i s  t h e  i d e n t i t y  on a a nd  p r e s e r v e s  t h e  f a m i l i e s  {Nix } ( i  = 1 . . . . .  n ) .  
L e t  dz = dEk+~Lk+~ be  a d i s p l a c e m e n t  s u c h  t h a t  

~ l N h + l = h l N ~ + ~ "  

Then  i f  h 1 = d ~ l o h  t h e n  hz p r e s e r v e s  t h e  f a m i l i e s  {Nix } ( i  = 1 . . . . .  n )  and  

h l l N j = i d ~  ( ] = 1  . . . .  , k +  t) 

by Definition i. Then we take d 2 = dEk+2Lk+2 so that 

de[Nk+2=hIlNh+2, 

and  we c o n s i d e r  h 2 = d ~ l o h l .  The map h 2 p r e s e r v e s  t h e  f a m i l i e s  {Nix } ( i  = 1 . . . . .  n )  and  

h 2 ] N j = i d N ~  U=I . . . .  , k + 2 )  

by D e f i n i t i o n  1. F i n a l l y ,  a t  t h e  (n  - k ) t h  s t e p ,  we i n t r o d u c e  t h e  d i s p l a c e m e n t  dn_ k = 

dEnLn such that 

Then if hn_ k = d~!kOhn_.k_ I, then hn_ k preserves the families {Nix } (i = 1 ..... n) a~d 

hn-h IN~ = i d ~  (j = t . . . . .  n). 

By Lemma 2, hn_ k is the identity on L n, so (13) holds for f. 

Case 4. We take d I = dEiLl such that 

Then if h I = d~1og then h I is the identity on N~ and preserves the families {Nix } (i = i, 
.... n) by Definition i. We take d 2 = dE2L2 such that 

e t c .  At t h e  n - t h  s t e p  we t a k e  d n = dEnLn s u c h  t h a t  

Then  h n = d ~ l o h n _ l  p r e s e r v e s  t h e  f a m i l i e s  {Nix } ( i  = 1 . . . . .  n )  and  i s  t h e  i d e n t i t y  on e a c h  
q - l i n e  N~, . . . ,  N n .  By Lemma 2,  h n i s  t h e  i d e n t i t y  on L n .  Hence  ( 1 4 )  h o l d s  f o r  f .  Theorem 
3 i s  p r o v e d .  

( 4 . 5 ) .  Now we c o n s i d e r  an o r d e r  C = L~ x . . .  • L k • K i n  L n ,  n > 4 ,  where  i n t  C ~ .  
Here  Lj a r e  d i f f e r e n t  q - r a y s ,  i s s u i n g  f rom t h e  p o i n t  e ,  and  K i s  an  (n  - k ) - d i m e n s i o n a l  
q u a s i c o n e  w i t h  v e r t e x  e .  We d e n o t e  by E i ( i  = 1 . . . .  , n )  t h e  q - h y p e r p l a n e  s p a n n e d  by L~, 

. . . .  L i _ l ,  L i+  1 . . . . .  L n ,  K. 

THEOREM 4.  L e t  C = L~ • . . .  x L k x K, w he r e  K x L x K~, L i s  a q - r a y ,  K~ i s  a q - c o n e ,  
dim K > 3 be an  o r d e r  i n  L n ,  n > 4 ,  w he r e  3C does  n o t  c o n t a i n  a q - l i n e ,  and  l e t  f :  L n 
L n be a C - i s o t o n i c  homeomorph i sm.  I f  t h e  q - c o n e  K l i e s  i n  a h o r o s p h e r e ,  

1)  p r o v i d e d  N 1 i s  n o t  a h o r o c y c l e ,  one  h a s  

] = ]oOdE1L1 . . . . .  dEhLh; ( 1 7 )  

2)  p r o v i d e d  N1, N2 a r e  n o t  h o r o c y c l e s ,  one  h a s  

] = ]oOdE~LILOdE2L=LodEaLa . . . . .  dE~L~; ( 1 8 )  

3) i f  N~ . . . . .  N t ( t  > 3)  a r e  n o t  h o r o c y c l e s ,  and  Nt+~ ,  . . . ,  N k a r e  h o r o c y c l e s ,  t h e n  

] = l o o d ~ + ~ + ~  . . . . .  d E ~ ;  ( 1 9 )  

4)  i f  a l l  N i ( i  = 1, . . . ,  k ,  k > 3) a r e  n o t  h o r o c y c l e s ,  t h e n  f i s  q u a s i a f f i n e .  
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If K does not lie in a horosphere, 

5) if all N i (i = i .... , k) are horocycles, then 

/ = & o d ~ L ~  o . . .  od~L~;  ( 2 0 )  

6) if N x ..... N t (t ~ i) are not horocycles, and Nt+ I ..... N k are horocycles, then 

] =/O ~ dE~+lLl+l . . . .  ~ dE~L~; ( 21) 

7) if all N i (i = i .... , k) are not horocycles, then f is quasiaffine. Ever:~'here 
here f0 ks some quasiaffine transformation and the displacements in (17)-(21) all commute. 
The displacements of the ist kind are any admissible ones, and for the displacements of 
the 2nd kind one must consider the remark of point (4.3). 

Proof. Since f is a homeomorphism, one can assume that C is closed~ Each N i contain- 
ing L i is the intersection of q-tangent q-planes to C. Under the map f, as we know, 
q-tangent q-planes go into q-tangent ones. Hence f(N i) will be some Njf(e ). The quasipiane 

h h 

E = N E~, spanned by the q-cone K, is mapped into the q-plane E/(~)= n Ei/(e), since f(E i) = 

E~=~-~ due to the fact that E i are q-tangents to C. Without loss of generality we assume 

t~at f(e) = e. Then f(E) = E and f preserves the family of q-cones {K~: x ~E}. Since K 
L • Kl, f is quasiaffine on E on the basis of Theorem i, if E does not lie in a horosphere, 
and on the basis of Theorem 3 of [I], if E lies in a horosphere. 

We take a q-affine bijection f0 such that f0(e) = e, fc(Li) = f(L i) (i = 1 ..... k), 
f0(K) = f(K) and f0 coincides with f on E. ~len g = f~of has the properties 

g ( C ) = C , g ( L , ) = L ~  (~=~ . . . . .  , k ) ~ g l ~ = i ~ .  

A. Let us now assume that E is a horosphere. 

Case I. We take d I = d E L so that d I coincides with g on NI. Then h I = d~1og pre- 
serves the order C and is the iaentity on N l, E. We take d 2 = d E L so that d 2 coincides 
with h I on N 2 . Then h 2 = d~1ohl preserves the order C and is the2i~entity on N~ N2, E etc. 

At the k-th step we shall have d k = dEkLk coinciding with hk_ l on N k while 

=ia  = . . . . .  k -  t ) ,  = 

Consequently, h k = d~ 1 ohk_ l will preserve {N~: x ~ L ~} (] = I .... , k), {E=: x ~ L "} and 

From this it is easy to conclude that h k is the identity on L n. For this it suffices 
to repeat the arguments given at the end of the proof of Theorem i. Since h k is the identity 
on L n one has that f has the form (17). 

The proof of cases 2-4 is essentially a repetition of the proofs of cases 1-4 of Theorem 
3. Hence we omit them. 

B. Let us now assume that K does not lie in a horosphere or that E is not a horosphere, 

Case 5. Let d = dEiLl be such that d I coincides with g on N l so h~ = d~og is the 
identT~y o~ N~, E, and also as before is C-isotonic. For the rest we repeat the proof of 
Case i. We proceed to Cases 6 and 7. 

Let N~ not be a horocycle. We denote by Z the quasiplane spanned by N~, E. Obviously~ 
g(E) = Z. We denote the restriction of g to Z by g~. The map g~ preserves on I the family 
of q-cones {Q=: x ~ Z}~ where Q = L~ • K. Just as in Theorem l, one proves that the q-tangent 
quasiplanes to Qx, x ~ Z are mapped by q~ to q-tangent planes. We show that there exists a 
family {i~: x~E} of q-lines (~ere %~%~cOKUOK-, K-= y~E: y e , and -~=is the order 

defined by the q-cone K in E), preserved by the map gx. 

In fact, we take a q-ray A c 8K issuing from e, such that the q-line I containing it 
is not a horocycle and along A the q-cone Q has q-tangent q-plane Ez not lying in E. If 
Z~ f~ K = A, then {%~: x~} is the family sought. In fact, in this case for x ~ Z~ we 
have K x ~ Z~ = A x. 

But g~ preserves {K=: x~Z} and g~(E~) = E~ since g~ is the identity on E and g~ maps 
q-tangent quasiplanes to Qy to q-tangents. Hence A and Ax, x ~ Z~ remain T-parallel after 
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mapping, or more precisely, gl(Ix) = I , because g1(k) = i. Now if x ~ El, then x 
Z1z for some z ~ E. But then gi(Z1z) = Zlgl(z) since gl(Zl) = Z I and T-parallel q-tangent 
quasiplanes are mapped to T-parallels, and consequently 

g~ (Ax) = g~ (K~ n Z ~  = g~ (f~) 0 g~ (E~) = Kg~(~) n E~g~(~) =fg~(x) ~ ~lz = Agl(x ), 

because gt(z)=z, gl(x)~Z~,  i.e., gz(Ix) = ~gl(x)" 

Let us now assume that K N Z~ = K I is a q-convex q-cone which does not reduce to a 
q-ray. In this case we consider on Z I the family of q-cones {Q~: z~t~ where Ql = LI • 
K I. We denote the restriction of gl to Z I by g2" Then g2(Z I) = Z l . Obviously K I does 
not lie in a horosphere. 

Consequently, the consideration of g2: ZI + El, preserving {Qi~: x~ Z~} with the object 
of picking out generators of the family preserved, does not differ from the same problem 
which we started to solve in relation to gl: Z + Z preserving {Q~: x~Z}. In other words, 
the case "K n ZI is not a q-ray" forced us to consider the same problem, but in a q-plane 
of lower dimension. Hence one can repeat the arguments already given above. As a result, 
we will introduce a quasiplane Z 2 q-tangent to Ql, not lying in E, preserved by g2 and a 
q-ray A l c 8K l such that the q-line I l containing it is not a horocycle and Z 2 is q-tangent 
to K l along At. If K I N Z 2 = A l then the family {k~: z~E} will be the family of q-lines 
sought, which is preserved under the map gl. Here in passing from {h~: z~ Z,} to {%~: m~ Z} 
one uses the fact that g~ is the identity on E, as is g2 on E N Z~. However if K~ n Z 2 = 
K 2 is a q-convex q-cone which does not reduce to a q-ray, then one should again lower the 
dimension, i.e., consider g3, the restriction of g2 to Z 2 which has the properties g~(Z z) = 
Z2, g~(Q~x) = Q~g~(x) for x ~ Z2, where Q2 = L~ • K~. As a result, either the required 

family of preserved q-lines will be picked, or we arrive at gm+z: Zm § Zm, dim Z m = 3, 
gm+~ preserves the families of q-cones {Qm~: x~ Zm}, where Qm = L~ • K m, dim K m = 2. In 
this case we take as the q-ray sought any generator of the q-cone 8K m (cf. the beginning of the 

proof of Theorem 2). 

Thus, there exists a family of q-lines {~: m ~ Z}, preserved by the map gi: Z ~ Z 
where I is not a horocycle. By now it is obvious, since K ~ L • K, that one can choose two 

such families: ~: z~}, {Z~: x~}, e ~  ~={e}; %, ~ not horocycles, i, ~ c 3K U 

3/<- and g~(l x) = Ig~(x), g~(Ix) = Ig1(x) for x ~ Z. 

On N~, I, I let us span quasiplane o. Obviously g~(o) = o. Then by Lemma 4, g~ will be 
quasiaffine on o. But since g~ is the identity on I, I by virtue of the dependence of the 
action of g~ on I, A, N~ the map gl will be the identity on Ni. From this, thanks to the 
fact that g~ is affine on N~, we get that g~ is the identity on N~ or g is the identity on 

N 1 �9 

The inference is as follows: g is the identity on each q-line Nj which is not a homo- 
cycle. Hence one should introduce the q-plane E spanned on E and q-lines N~, ..., N t (t 
i) which are not horocycles. Then g is the identity on E, and it remains to construct dis- 
placements dEj L (j > t) along the remaining q-lines Nt+l, ..., N k. In Case 7 one does not 

have to do this, and in Case 6 one repeats the standard argumants (cf. Case i). Theorem 4 

is proved. 

5. The Case C ~ L • K, C = L • K 

We assume that 8C does not contain a q-line and intC ~ ~. 

(5.1). On the Lobachevskii plane we consider an order defined by a q-cone C such that 
= L~ • L 2. Then C is gotten from C by subtracting one or two edges at once. In this case, 

as is easy to see, any C-isotonic homeomorphism can be calculated from (2), (3). 

(5.2). Let C be a quasicone, defining an order in the Lobachevskii space L ~, and C = 
L~ • Lm • Lm. Then C is obtained from C by removing edges, faces, or part of the interior 
of faces. In the first two cases a C-isotonic homeomorphism f is described by Theorem 3, 

i.e., it has one of the following forms: 

i) it is quasiaffine if Ni, N=, Ns are not horocycles; 

2) f0odE~L odEzL odE~L~ if only one of the q-lines N i is not a horocycle; 
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3) f0odE~LIL2odEzL~LIodE3L~, if N I, N 2 are not horocycies and N3 is a horocycle. Here 

f0 is a quasiaffine transformation. 

If part of the interior of one face is removed, then 

4) f is quasiaffine, if N I, N 2 are not horocycles, N 3 is a horocycle, and part of a 

face of L~ x L 2 or L 2 • L~ is removed; 

5) f is f0odE3L3 if N I, N 2 are not horocycles, N~ is a horocycle, and part of a face 

of L I • Ln is removed; 

6) f is f0odEiL1, if Nl is not a horocycle and N2, N~ are horocycles, and part of a 
face of Lax L~ is removed; 

7) f is f0odE2L~ if N l is not a horocycle, N2, N 3 are horocycles, and part of a face 

of L I • L 3 is removed; 

8) if part of the interior of two faces is removed, then f is quasiaffine~ 

Assertions 4-8 are trivial, since when part of the interior of a face is removed, the 
rest is a q-cone, for which f will preserve a generator of the boundary. Consequently, 
in the face, in addition to edges there appears another q-line preserved by f. It remains 
to apply Lemma 1 or its Euclidean analog. 

(5.3). The cases of dimension 2 and 3 considered above suggest what will happen in 
n-dimensional space. Since C = L • K any C-isot0nic homeomorphism, being C-isotonic, can 
be described by Theorems 3 and 4. Considering that f is a C-isotonic homeomorphism, we 
arrive at the following inference: the displacements in (12)-(14), (17)-(21) cannot be 
arbitrary but only quasiaffine, for the reasons indicated at the end of point (5.2). 

Here the form (12)-(14), (17)-(21) of the map f is preserved if C is gotten from 
by removing entire edges or faces of a face, etc. When one removes only part of the interior 
of a face (part of the interior of a face of some face of higher dimension), in the corre- 
sponding formulas for f the displacements will reduce to quasiaffine transformations. If 
one removes part of the interior of faces lyin Z in horospheres, then this assertion follows 
from Theorem 6 of [i]. In removing part of the interior of faces not lying in horospheres~ 
there may apppear a family of preserved q-lines {IV=: x~L '~} in addition to the q-lines Ll~ 
..., Lk, such that N is not a horocycle. Consequently, if among Nl, ..., N k there were only 
two which are not horocycles, Nl, N2~ thenone gets three~ Then by Lemma 1 f will be 
q-affine on Nl, N 2 and in (12), (18), displacements of the second kind disappear. If only 
the q-line N I was not a horocycle, and the rest N2, ..., N k are horocycles, then in the pre- 
served q-plane o spanned by NI, N there will be three families of preserved q-lines: {Nix }, 
{Nx} and {o x O EIx}. In other words, f is q-affine on o, i.e., on N-~. Hence in (14)~ (17) 
the displacement d E L disappears, but here displacements of the second kind do not appear, 

1 1 
as one could think, looking at the appearance of the two preserved q-lines NI, N which are 
not horocycles. 

The concrete form of the C-isotonic homeomorphism f can be determined from the precise 
description of how C is obtained from C. 

6__ u Continzenqy Theorem 

Let us assume that the invariant order P in L n, n ~ 2 is a set satisfying the follow- 
ing condition: 

A. There exists a neighborhood of the point e, such that in it, the intersection P n 
P- does not contain points other than e, where P-={x~ L~: x~e}. 

We show that a P-isotonic homeomorphism is necessarily C-isotonic, C being an order 
defined by a quasicone. 

(6.1). By a quasicontingency (q-contingency) of the set M c L n at the point a we mean 
the q-cone formed by all limits of q-rays issuing from a and passing through x ~ M, x ~ a, 
as x + a. We denote the quasicontingency by qc(M, a). If the point a is not a limit for 
M, then by definition we shall consider that qc(M, a) = {a}. It is easy to verify that 
a q-contingency is a closed q-cone and qc(M, a) = qc(M, a). 
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Suppose given an order P on L n. By a directed curve issuing from the point x we mean 

the image of the half-axis [0, +~)cR under a continuous and monotonic map of it into L n 

under which 0 is mapped into x. Obviously any directed curve issuing from x is contained 

in Px" 

THEOREM 5. Let P define an order in Ln and C = qc(P, e). Then 

i) C c p and C is a closed q-convex q-cone; 

2) if P is a closed set and P satisfies condition A, then the boundary 8C does not 
contain q-lines and C coincides with the union F of all directed curves issuing from the 

point e. 

Proof. By a q-ray of the q-contingency C we shall mean a q-ray issuing from e and 
contained in Co The case e ~ P\{e} is trivial. We assume further that e is a limit point 
for P. The proof given below becomes transparent if one uses the Poincare model. 

I. Let L be a q-ray of the q-contingency C. There exist q-rays L~:.'l+(e, x~), x. ~P,  
issuing from e, passing through Xn such that L = lim L n as x n § e. Along with the point 
x n the q-ray L n contains all points of the form enh=tno...otn(e), where t n ~ T is a motion 

k 

carrying e to x n. As x n + e the points Xnk condense on the q-rays ~n and their limits form 
the q-ray L. But all Xnk ~ P and consequently, L c p. Hence C c p. As was said above, 
C is trivially a closed set. We prove its qlconvexity. Let LI, L 2 be two q-rays from C. 
By what has been proved, Lz, L 2 c P. Since P defines the order in L n one has Lzx c p for 

any point x ~ L 2. The set 

U Ll~c-c-P, 
x ~ L  2 

as i s  e a s i l y  seen  in  t he  P o i n c a r e  model ,  w i l l  c o n t a i n  t h e  q - s e g m e n t  [ x l ,  x2] f o r  any two 
p o i n t s  Xl ~ L1 and x 2 ~ L~. By t h e  a r b i t r a r i n e s s  o f  t h e  q - r a y s  L i ,  L2 and t h e  p o i n t s  
xi, x 2 we see that the set C is q-convex. 

2. Let P be closed and satisfy condition A. If 3C contained a q-line, then in ~iew 
of the q-convexity and closedness of C, 3C N ~C- would also contain a q-line. But 3C c p 
and 8C- c p-. Consequently, P N P- would contain a q-line. The latter contradicts condi- 
tion A. Thus, 8C does not contain a q-line, so C has a strictly supporting q-plane at the 
point e (i.e., ICI in the Poincare model has a strictly supporting Euclidean plane in the 

intersection with {x i > 0}). 

Now we show that F c C. Let us assume the contrary, i.e., that there exists a point 
a ~ F, but a ~ C. Let L be an arc of a directed curve issuing from e and passing through 
a. One can include the quasicone C in a q-cone K with vertex e, which is a closed q-convex 
q-cone with boundary 8K, containing no q-lines. In addition a ~ K. We take at the point 
e a strictly supporting q-plane Q, separating K from the point a. Since C\{e} lies inside 
K, it follows from the definition of q-contingency that there exists a neighborhood U of 
the point e for which P n U c K. Hence some initial segment of the arc L is contained 
in K. From this we conclude that L intersects Q. Let b be the last point (in the sense 
of the order on L) of the arc L at which L intersects Q. Let L' be the part of L included 
between b and a. Obviously L' c Pb" Since Pb N U b c Kb, some initial segment of the arc 
L' is contained in K b. The quasiplane Q will be strictly supporting for K b because b ~ Q, 

and under movement e +b by motions from the group T, Q goes to Q. Hence, the arc L' on the 
initial segment will be separated from the point a, and consequently the arc L' intersects Q 
in a point different from b. The latter contradicts the condition according to which this 

point b was chosen. 

Thus, F c C. Since any q-ray from C is a directed curve, one has C c F. Thus, C = F. 

Theorem 5 is proved. 

(6.2). THEOREM 6. Let f: L n § L n, n ~ 2, be an isotonic homeomorphic map. Then 

i) for any x ~ L n we have f(Px) = Pf(x); 

2) if P satisfies condition A, then f(C x) = Cf(x), where C is the quasicontingency of 

the set P at the point e, i.e., C = qc(P, e). 
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Proof. Assertion 1 is obvious. According to Theorem 5 the quasicontingency C coin- 
cides with the union F of all directed curves in the order defined by the set P. Since 
f(Px) = Pf(x) and f is a homeomorphism, it associates with a directed curve (in the order P) 
another such curve. Consequently, f(Fx) = Ff(x). But C x = Fx o Hence f(C x) = Cf(x). Theorem 
6 is proved. 

(6.3). A direct example of how to use Theorems 5 and 6 is the following 

THEOREM 7. If P is an order of L n, n ~ 3, and satisfies condition A, and the quasi- 
contingency qc(P, e) ~ L • K, int qc(P, e) ; Z, then any isotonic homeomorphic map f is 
quasiaffine. 

Proof. According to Theorem 6, f(C x) = Cf(x), whereC = qc(P, e), for any point x 
L n. By Theorem 5, C does not contain q-lines, C ~ L • K, so by Theorem i f is quasiaffine~ 
Theorem 7 is proved. 

(6.4). Remark. As follows from [3], the similarity in the description of isotonic 
homeomorphisms in Euclidean and hyperbolic spaces is due to a common property of the Lie 
algebras of an Abelian group and the group of motions T, considered in the paper. Hence, 
the results of the paper and also the results of A. D. Aieksandrov [i] can be recounted 
in the single language of the theory of ordered Lie groups. 

i~ 

2. 

3~ 
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HARDY-LITTLEWOOD THEOREM IN DOMAINS WITH QUASICONFORMAL BOUNDARY 

AND ITS APPLICATIONS TO HARMONIC FUNCTIONS 

M. Z. Dveirin UDC 517.53 

In the theory of functions of a complex variable the theorem of Hardy-Littlewood (cf., 
e.g., [i, p. 74]) on the connection between the smoothness of a function, analytic in the 
unit disc, and the growth of the modulus of its derivative upon approximating the boundary 
of the disc and also the theorem of Privalov [2] on the smoothness of conjugate harmonic 
functions in the disc are well known. These assertions have been generalized by a number 
of mathematicians [1, 3-6]. In particular, the HardyT-Littlewood and Privalov theorems have 
been extended to domains of the complex plane other than the disc~ The latest results in 
this direction are due to Johnston [7], who found the analog of the Hardy-Littlewood theorem 
for domains with locally Lipschitz boundary, and V. A. Borodin [8], who extended Privalov's 
theorem to domains with piecewise-smooth boundary without null corners, in the present 
paper analogs of the theorems cited above are found for domains with quasiconformal boundary. 
With their help we prove a theorem on the rate of approximation of harmonic functions by 
harmonic polynomials. This question was also investigated previously; theorems on the rate 
of approximation of harmonic functions are due to Walsh, Sewell, and Elliott [9] (the 
boundary of the domain is an analytic curve), V. K. Dzyadyk [i0] (smooth boundary), and 
V. A. Borodin [8] (piecewise-smooth boundary). 

We introduce the notation and definitions needed. Let G be a simply connected finite 
domain with Jordan boundary L and complement ~ ; w = ~ (z) be a function which maps the 
domain G conformally and univalently onto K l = {w: lw[ < i}, where the inverse function z = 
~(w) is normalized by the conditions ~(0)=a, a~G, ~'(0)>0; IF={z: [~(z)[ =r~, r~(0; I), 
is the r-th level line of the function ~; the flmction w = ~(z) maps the exterior of the 
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