A CHARACTERIZATION OF TWO-DIMENSIONAL
ELEMENTARY GEOMETRIES

A. K. Guts UDC 513,011

Consider a metric space M with metric p and assume that it has the following property: for each point
X €. M there exists a spherical neighborhood (ball) of x, B(x, 0%), 6x > 0, which admits a rotation in the sense
of Buseman, i.e., for any points a, a', b, b' € B(x, 6x) such that pxa) = pka'), p&b) =pib'), and plab) = p x
(a'b"), there is an isometry map of the ball B(x, ) onto itself which keeps x fixed and takes a into a' and b
into B', Qur problem is: when is the universal covering space of M isometric to the Euclidean plane, to the
Lobachevski plane, or to the two-dimensional sphere?

This problem may be interpreted as a local version of the well-known Helmholtz— Lie conjecture, The
most satisfactory solution of the latter is given in Freudenthal's paper [1], where the following result was ob-
tained,

Let M be a connected, locally compact metric space, and let F be a doubly transitive group of homeo-
morphisms of M (i.e., given two arbitrary pairs of points in M, there is an element of F which takes the first
pair into the second). Moreover, let M and F satisfy the following axioms:

(S) given two arbitrary closed subsets of M, A and B, ANB =@ , there is an open subset U of M, U # Q,
such that for any A=F either MO NA=2, or MU)NB =4,

(V) the group F is complete;

(Z) let Jx, be the isotropy subgroup of F at a point =M. Then there is an orbit Jx (y) which separates
the space M.

Then M is already a doubly transitive homogeneous space in the sense of Birkhoff—Wang, and, in par-
ticular, M is a Euclidean space, a hyperbolic space, or a sphere, while F is a closed subgroup of the corre-
sponding group of isometries, ‘

Analogous results were obtained by others [2-6]. The typical method used in these papers is global and
relies mainly on results from theory of Lie groups. However, the following local variant of the solution to the
Helmholtz— Lie problem, due to Buseman, is known,

THEOREM B. Let {M, p) be a G-space such that each point x € M has a spherical neighborhood B(x, dx),
8¢ > 0, which admils a rotation in the sense of Buseman. Then the universal covering space of M is elementary,
i.e., Euclidean, hyperbolic or a sphere ({2], p. 411).

Recall that according to Buseman a G-space is any space which satisfies the following axioms:

I. (M, p)is a metric space.
II. (M, p) is boundedly compact, i.e., any bounded infinite subset has at least a limit point.

1. Given arbitrary distinct points x, z, there is a point y such that (xyz), i.e., y # x, y # z and pixy) +
plyz) = plxz).

IV. Given any point x € M, there is a positive number py such that for arbitrary distinct points, y, z in
the open ball B{x, gy) there is a point u such that (yzu).

V. If kyzi), Xyz:), and plyz) = plyzs), then z; = z,.

Although Buseman's result is the only attempt known by the author to solve the Helmholtz—Lie problem
from the local point of view, it does not give a complete answer to the problem stated at the beginning of this
paper. Indeed, the local uniqueness if the geodesic joining two points x, y<=B(p, p») is a direct consequence of
axioms IV and V, and this is such a strong assumption that it should be dropped. We remark that in introducing
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the notion of a G-space, more general questions than that of finding 2 direct solution to the Helmholtz— Lie
problem were posed. Below we discuss a system of axioms whose specific purpose is to lead to an answer of
the problem formulated at the beginning of our paper.

From now on, M shall denote a separable, locally compact, metric space with intrinsic metric p,

Denote by rx) the lowest upper bound of all numbers r > 0 such that the open ball B'(x, r} is a compact
subset of M. Further, let p(x) be the lowest upper bound of all numbers p; > 0 such that given y, z&= B(z, p.),
then y is joined to z by a geodesic. It is known that either p(x) = += for all ze M , or the function pfx) is con-
tinuous and takes only finite values.

We now formulate two axioms.

‘(AI) Given any point z= M , there is d{x) > 0 such that if I{) is the group of isometries of the ball B,
d(x)) onto itself, then I{x) acts effectively* and transitively on each sphere S, r}, 0 <r <dfx), and Ax) =x
for all A= I(z).

(A) Given any point z= M, there is 6y > 0 such that 6y < min {d&), r(x), px)) and the following holds:
a) the sphere S(x, r) is connected for all r, 0 < r = Jy;

b) on each sphere S(x, r), 0 < r = 6y there exist two distinet points ay, br which separate S{, r}, i.e.,
Sz, r\da,, bd=4,U4,, where 4, N4, =2, and A, A, are open nonempty subsets of Sz, r!\la, b} ;

¢) given any v, 0 <r = 04, there is an isometry A = [{z) such that Me.) =4, and Mb) =4, [or ia)e4d,,
Mo =44 ],

We remark that axiom (4,) is a local variant of the axioms (8) and {Z) introduced by H, Freudenthal, Here
the role of condition b) is that of fixing the dimension of spheres: we deal with one-dimensional spheres, and
hence with a two-dimensional space M,

THEOREM 1, Let the space M satisfy axioms (A|) and (A;). Then
(1) S&x, r} is homeomorphic to the one-dimensional Euclidean sphere, for allx ¢ Mand 0 < r = &,

(2) The group Ix) is a compact one-dimensional Lie group, and all its isotropy subgroups are compact
and zero-dimensional.

(3) The connected component of the identity of I{x) acts effectively and transitively on Stx, r}, 0 < r = Oxs
and is isomorphic to the Lie group SG(2).

THEOREM 2. Any space M satisfying axioms (A;) and (4,) is a two-dimensional topological manifold,
We need three more axioms in order to solve the problem.

(A3) Given any point z« M , the ball B&, d(x}) admits a Buseman rotation.

(Ay) Given any point z=M , there is a point y &M such that plzy) < min (d(z), d(y), 8,).

(As) Given any point z=M, and any two geodesic starting from x, the angle between these geodesics exists
in the sense of A. D. Aleksandrov. Moreover, there are at least two geodesics starting at x between whom the
angle is not zero.

Axioms (A;) and {A,) are just a strengthening of axiom (A). At the same time, axiom (A;) eliminates
from consideration spaces with multi-faced metrics, which are not elementary,

Definition. A space M which satisfies axioms {A,)-(A;) is called an r-space,

THEOREM 3. Let M be an r-space. Then for each z< ¥ one can find a number Nygs 0 <7y = Oy, such
that any point y = Blx, n.) may be joined to x by a unique geodesic.

This theorem is the key result in all our study. Its proof is quite complicated and lengthy (Sec. 4).
The next theorem gives the answer to the problem solved in this note.
THEOREM 4. Let M be a complete r-space. Then M is a two-dimensional Buseman G-space, whose

universal covering space is elementary, i.e., the Euclidean plane, the Lobacevski plane, or the sphere,

*If the action of Ix) on S, rg), 0 <ry<d®), dix) = p&), is not effective, then the geodesic joining some point
y e B(x, d()) with x is not unique (V, N. Berestovskii).
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COROLLARY. Any complete r-space is one of the following spaces: a sphere, a projective space, a
Euclidean plane, a cylinder, a torus, a Mdbius band, a Klein bottle, or, finally, a two-dimensional locally
hyperbolic space; there is an infinite number of spaces of the last type, but their description is known [7].

Remark, An r-space which is not complete is not a Buseman G-space. Moreover, there are incomplete
r-spaces whose universal covering spaces are not isometric to elementary ones: consider the punctured
Euclidean space.

The results in this paper were previously announced in [8].

Finally, I would like to thank V. A, Zalgailer and V. N, Berestovskii for their valuable remarks and
help.

1. NOTATIONS
In this paper we use the following notations:

pla, b)) the distance between points a, b; ab) a geodesic with extremities a and b; S(L)) the length of the
curve L; Ll[a, b}) the piece of curve L between the points a, be L;

B(a, 1)) the open ball with center « and radius r > 0; B'(a, r)) the closed ball; S{a, r)) the sphere with
center a and radius r > 0;

-_A) the cardinal of the set A; ordy A) the order of the topological space A at the point o {9];

S') the unit circle in the Euclidean plane; X ~Y) spaces X, Y are homeomorphic; G = H) groups G and H
are isomorphic; int A) the interior of the set A; A) the closure of the set A; Fr (A)) the boundary of the set A,

2. PROOF OF THEOREM 1

(1) Choose a number r, 0 < r =< 64, and let a, b separate S(x, r), as guaranfeed by condition b) of axiom
(Ay):

Write 2= S(z, r)\{g, b} =A4,UA4,, A, N A, =%, where A,, A, are nonempty open subsets of Z. Since X is
open in S, r), A;, A, are open inS(x,r). Furthermore, since S(z, r)\4, =4, U{q, b}, then A4:<4,U{q, b}. Conse-
quently, Fr (4,) ={a, b} . We remark that here the closure and boundary are faken relative to S(x, r). Now let
pe A, g= A, be arbitrary points. Then A4, n{g}=¢ and Fr(4,) =2, i.e., ordp oS, r) = 2. According to
axiom (4,), condition c), there is 2 A=I(z) such that Ma)=4,, Ab)= 4, Therefore, we get ord)(q) A (b)S &,
r) < 2, Since A is an isometry, ordg pS(x, r) = 2,

Now let p=S(z, r), p #a, b, and assume that p= A,. Then there is ¢ > 0 small enough to ensure fhat
B(p, £)NS(z, <A, and that Bla, e) N A, # &, B(b, e)N4,#2Z , We claim that the point p cannot be isolated:
assuming the contrary, axiom (A;) would imply that the sphere consists only of isolated points, and, being
compact, the number of these points is finite and each one is an open subset of the sphere. But this contradicts
the connectedness of the sphere. Therefore, there are points ag, bg such that ¢, = Bla, )N 4, , b.=B(b, e) N4, ,
and there are isometries &, A’€I{z) such that A{a) = a¢, A'(b) = bs. Then Mp), A'(p)=B(p, e}NA,, As we proved
above

ordyp),ua)S (2, 1) < 2, ordapyaryS (2, 1) < 2.

Since A, A' are isometries, ords, «S(z, 1), ordy ,5(z, r) <2.
In conclusion, the inequality
ords, Sz, 1)<2-
holds for all points p, g=Slz, ).
By Theorem 9 of ({2], p. 291),
ord, S{z, r)<<2,

for all points peS(z, 1), i.e., S(x, r) is a regular space. Let us show that ordpS(x, r) = 2. Assume the con-

trary, i.e., that there is a point py such that ordpos(x, r) =1, Then axiom (A,) shows that orqu(x, r) =1 for
all points g = 8(z, r). Now, by Theorem 1 of ([9], p. 295), the set S(z, r)\la} is connected. But be S(z, r)\{a}
and ordy{S{z, r\Ma}) <1 (Theorem 3 of [9], p. 283). Consequently, S(x, r) . {a, b} is connected, which contra-
dicts condition b) of axiom (Ag).
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Therefore, ordpS(x, r) = 2. Now, Theorem 6 of {[9], p. 299) or Theorem 8" of {[9], 0. 302) shows that
Sk, r) s

Step 1 is proven.

(2) The ball B, d{x)}, being a subset of a separable, locally compact space with an inirinsic metric, is
a connected, separable, locally compact metric. Since 1(x) is the isotropy subgroup of the group of all iso-
metrics of B{x, d{x)) onto itself, it can be endowed with the compact open topology, Thus, Ix) becomes a com-~
pact continuous group of transformations of the ball B{x, d{z)} ({10], Theorem 2.5, Chap. IV}.* The group I(x)
acts effectively and transitively on the sphere S, 0y), which is a one-dimensional manifold, homeomorphic to
st Consequently, I(x) is a Lie group ([11], Theorem 75) of dimension 1 [12]. We see that any isotropy sub-
group of I(x) is compact and zero-dimensional.

(3) Let X be an isotropy subgroup of I(x). Then the quotient space X = I(x} /K has a unique analytic struc-
ture such that I(x) is a Lie group of transformations of the manifold X ([10], p. 132). ButX ~ S(x, 0y}, and so X
is compact, connected and one-dimensional, As such X is diffeomorphic to S', We obtain that the connected
component I,(x} of the identity of I{x) acts effectively and transitively on X ~ S, r), 0 < r = 44 ({10], p. 132].
Since the Lie group I{x) is connected, one-dimensional, and compact, I;&x) =802},

Theorem 1 is proven.

3. PROOF OF THEOREM 2

1, Proposition 1, There is no isometry A =I,(z), different from the identity which keeps fixed some point
yeS, N, g<r<d.

Indeed, let A=I{z), such that A is not the identity, but satisfies Ay} =y for some y=8(z, r) , Fix an
orientation of the sphere 8{, r), i.e., a direction on the closed Jordan curve S{x, r). Let ¢ > 0 be small enough,
such that & < p(apby), where a;, by are the points discussed in condition b) of axiom (4,) and the sphere S{y, &)
is compact, S(y, &) ~S'. Then S(y, ¢) N Sz, r) is 2 nonempty compact subset of M. Now choose points z;, 2
such that if we write Li(y, zi}, 1oy, z,) for the compact arcs of the sphere S{x, r) with extremities y, z{ and
¥, Zy, respectively, and which are contained entirely in the closed ball B'{y, &}, then Ly, z)n[8{y, e)nSz,
Ml={z} (i=1, 2), and (L(y, z2\{z3) N[S(y, &) N Sz, )] =@, Then two cases are possible: A(z;) = z, or Afzy) =
zy, The second possibility must be eliminated, because ) doeg not preserve the orientation of 8(x, r), and this
contradicts the connectedness of the group I;x). Considering the first case, we get that, in general, the point
z, arbitrarily close to y is also fixed. Since the sphere S(x, r} is compact, the latter implies A{z) = z for all
ze= 8z, r). This contradicts our hypothesis that A is not the identity of I;(x), while I,(x) acts effectively on each
sphere S, 1}, 0 <r = 04 [which shows thatonly the identity of Io(x) can be the identity isometry on Sk, )L

This completes the proof of Proposition 1,

2. Proof of Theorem 2. Let y,=S(z, &) and let L be any geodesic joining x to y,. We parametrize the
group I,(x) by a parameter ¢, 0 = ¢ < 27, i.e., we choose a continucus bijective map & : [0, 2x) - 7,(z), which
is possible because Iy(x) =S0(2). Obviously, given any =10, 2x), P{p)(L} intersects the sphere S{x, 1},0 <
r =< bg, at a unique point. Now pick z&B'(z, §,). Then one can find ¢.=10, 2x) such that {z} = P(p,)(L) N S(z,
p(xz)). The number ¢, is uniquely determined by z: if @' # ¢, and ¢' has the same property as g, i.e., {z} =
P ML)y NSz, plzz)), then z=Ple ) z,) =L {g.)z,) , where {z,} = LN Sz, plzz)). But then (L}t e P, ){z,) = 2z,,
while the isometry [Z{g)]-* P(g,) is not the identity of I,6c). This contradiets Proposition 1.

Let KE be the closed disk in the Euclidean plane E? defined in polar coordinates {p, r) by the relations
0<¢<2m, 0<r<3§.. Define a mapf:B'{, dg) — Kg by {@) = (¢, sz}, z © B'(x, 8g).

Since Iy{x) acts transitively on every sphere S(x, r), 0 <r = dy, f is defined on the entire ball B'&, dx).
According to Proposition 1, f'is one-to-one. Now let us show that f is surjective, i.e., that it maps B!, 0x)
onto Kg. If (g, 1) € Ke, then, obviously, z=Z(p)(L) N S(z, r) = B’(z, 8. and £(z) = (p, r). Consequently, { is a bi-
jection from B'(x, 8¢) onto KE. It remains to check that f is a homeomorphism. Now f~! maps the compact set
Kg onto the Hausdorff space B'(x, 64), and so it suffices to show that f~! is continuous, Let (Pns Tn) — @, T)
as n — o, Set z, = L)L) NSz, 1), z=L(eUL)" S(z, r), Then z,, z=B'(z, &) and f“l((pn, ry) =2y, e, 1) =z,
Since (@)~ Z(@) as n— =, (@ )(L) > Z(p)(L) as n — = (here the convergence is understood as follows: the
geodesics Z (g (L) and Z(@)(L) are parametrized by a parameter t=1[0, 11, and Z{p (L)) —~ ZoHINH as

*In Theorem 2.5 of [10] the space considered is a Riemann space. However, the proof carries over, without
changes, to a connected separable metric space,
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n ",w)' Analogously S, ry) =~ S, r) as n—~ = [the parametrizations of S{x, ry) and Six, r) are given by
Z(p) ]. Consequently, z,, =~z as n — 0, In other words, £~! is continuous, f is a2 homeomorphism, and so M
is a two-dimensional topological manifold. Theorem 2 is proven, '

4. PROOF OF THEOREM 3

1, LEMMA 1, If B(p, rp) and B, ry admit (Buseman) rotations and p(pq,) = p(py) < rp, then B(q;, min X
(rgs Tp — P(pa)) admits a rotation.

A proof is given in ([2], p. 408, Theorem (48.1)).

LEMMA 2, Let z= M, There is a number &, 0 < £ < 0g, such that the ball B(u, &) admits a rotation for
all points ue Blz, &),

Proof, In Lemma 1, take g =x and p =y, where y is the point corresponding to x by virtue of axiom (4,).
By Lemma 1, the ball B(v, min(d), d(y) — py)) admits a rotation for any point ve sy, olzy)) . Now, let
a, beS(y, plzy)) be points which separate the sphere S(y, pky)) [condition b), axiom (A,)]. Since plzy) <8,
Sty, plzy) = §*, and hence Sz, r) NSy, p(zy)) is a nonempty set for all r, 0 <r<plab). Let t == 1in (dx), 8, —
plzy), pleb)) and B.=min (d(z), e —plzu). plab)), where u=Blz, ¢) is arbitrary. Since & <p(ab) , one can find
a point v Sz, olzu)) NSy, olzy)). Denote by A € I{x) a rotation such that A(x) =x, A(u) =v. Then

MB(u, B.)l = Blv, min (d(x), d(y) — plzy)).

This shows that the ball B(u, B,) admits a rotation. Indeed, let a, @', b, b'=B(u, $.) be the points ap-
pearing in the definition of the rotation. Then a rotation u of the ball B(u, 8,), which takes a into &' and b into
b' is given by p=»A"'28°4, where 6 is a rotation of the ball B(v, min (d&), d{y) —p(xy)))taking A(a) into Aa') and
Ab) into A(b'). Now take e= € /2. If p(xu) <g, then By = €, i.e., the ball B(u, €) admits a rotation. Lemma 2 is
proven,

2. Proof of Theorem 3. Assume that the theorem is not true. Then there is a point 2& M with the prop-
erty that given any 7, 0 < 1 =< dy, one can find a point y € Bz, n) which can be joined to x by more than one
geodesic. Denote by (zy),, i=I, the geodesics joining x to y, where I is a set indexing all such geodesics.

(a) Let us show that I is an infinite set. If not, i.e., if 1 < T<nandi= m, m a natural number, we let
iy #iy, iy, =T, and let n' be a number such that 4" <8, 1" <plwy), and (zy), N S(z, 1) = {z}, (2Y)s, N S (=, W) =
{w}, z5=w. Then there are at most m — 1 geodesics from the family {(zy)}.r which pass through z, Moreover,

[Eihes =T <m—1.

which, as one can easily see, contradicts the assumption made at the onset of this proof. Indeed, let L' be an
m-th geodesic, different from the geodesics of the family {(zz)};e; and joining x and z, and let L" = ky)j, [z, y]
be a geodesic with extremities z andy. Then L=L’UL” is a geodesic with ends x and y. But L# {(zp)ds,
since the piece L' of this geodesic is "new" [i.e., it is not the restriction of a geodesic from the familyl{(zy)diail.
Contradiction,

(b) By Lemma 2, there is & > 0 (¢ < 6x) such that the ball B(u, &) admits a rotation, for all ue Bz, &).
Choose a radius ux such that the ball B(x, ux) is homeomorphic fo an open disk in the Euclidean plane, and
set gy = min (px, £/3), U= Bk, &). Then any ball B(x, e.), ue U , admits rotations, and all such rotations are
defined on the entire space U.

There are two geodesics (xy)j, and (xy)j, such that one can find two distinct points p, ¢ & (2y);, N (@Y.
enjoying the property
[(=y)s, | [P2-@)] O Kz, | 1P, 91] = {P: g}
i.e., these geodesics do not have common points between p and q.
With no loss of generality, one may assume that p, ¢=U. Se;t
Ly = (zy)i, | (P, @) Ly = ()i, ) [Py gy 5= 5(Ly) =5(Lg) > 0.

Let o be the closed subdomain of U, bounded by geodesics 1, and L,. Obviously, o is homeomorphic to a
closed disk in the Euclidean plane,

Consider the balls B(p, s/2), B(q, s/2). Thereisnopointw € into suchthat wéB{, s/2) andw €B' (q, 5/2),
or we B'(p, s/2) andw € Blq, 8/2): if this were not true, then there would exist a rectifiable curve L with extremi-

ties p and q, whose length was strictly smaller than s, which is impossible,
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Therefore, we have at most
gNB'(p, s/2) N B'(q, s/2) = 8(p, s/2) N 8(g, s/2) (o, 8]
Moreover, the following equality holds 7
LB (p, s/2) UB'{q, s/2)I No=0. 2)

Indeed, it suffices to show that through each point we ¢ passes a geodesic which joins p to q and is en~
tirely contained in 0. If weFrlo) , then weL, or we L, Now let w=int¢, and choose a point ve L, such that
p(pv) = plpw). Such a point exists, because weB’(p, s). Then there is a rotation A=I(p) with A(v) =w. The
geodesic A(L;) intersects L, only at the point p (see Proposition 1), but it certainly intersects L,. We replace
the pieces of the geodesic A(L,) which lie outside o by the corresponding pieces of the geodesic L,. If u is the
last point of intersection of A(L;) and L, [when we move from p towards Ag)], then the piece A(Ly) [u, A@)] is
replaced by L, [u, q]. As a result of these modifications, we get a geodesic pg<o. passing through w. There-
fore, 2) is true,

(c) The spheres S(p, s /2) and S(q, s /2) have a commeon arc 7, which is a geodesie,
Indeed, S(p, s/2) ~S!, S(q, s/2) ~ 8!, and hence equalities (1), (2) show that
v=238(p, s/2) N S(q, s/2)Nc

is an arc homeomorphic to the segment [0, 1] of the real line. Let &, b7, a # b, be points close enough, such
that all geodesics {(ab):}ier are contained in 0. One can assume, with no loss of generality, that there are geo-
desics (ab)y,, (ab)j, satisfying

- {ab), N (ab)i, = {a, b} 3
and

(ab)il < B (pv 8/2)1 (ab)i2 B (97 3/2) . (4)

Indeed, if (3) does not hold, then one can choose @' € (ab)j;, b' € (ab}j, which satisfy 3), and replace a, b by
a', b'. To verify (4), let, for example, (ab);,, (ab)i, = B’ (p, s/2) . There is a rotation A =I(a) , with A(p) = q and
AMa) = p. Now let p=I{g) be a rotation satisfying ulA(e)) =a, u(W(b)) =>b. Then the isometry u <A maps B'(p,
s /2) onto B'(q, s /2), and takes a into a, b into b, Consequently, (n-A) [(ab)il] < B'(g, s/2) is a geodesic joining
a and b, and so (4) is frue.

Set K; = (ab)j;; K; = (ab)j,, and let o, be the closed subdomain bounded by K; and K;. Clearly, 6, <¢ and

w=r1lla, bl =o;. Let z,=7,.. Then there is a rotation A= {a) such that z,=Ar(K,). Let z' be the next point of
intersection of the curves A(K;) and K, after z; [when we move on A{K;} from a to A(b)], and consider the geo-
desic MK |la, 2’1 UK,llz’, b] . Repeating, if necessary, the arguments used to prove relations (4) and {2), we
transform this geodesic into a geodesic K; joining a to b and satisfying

K, <o, Klla, z,0 @ B'(p, s/2), K,llz, bl <= B'(q, s/2).
Similarly, rotating K, around a, we get a geodesic K, joining 4 and b and enjoying the properties
7, € K, K, <o, Killa, z.] = B'(q, s/2], K.\lz, bl = B'(p, 5/2),
T, =K,lla, zJ UK.lz, bl c B'(p, 5/2), Ty = Klla, 2] U K,llz,, bl = B'(q, s/2).

Let g, (0';) be the closed subdomain bounded by the geodesics Kylla, z{}, K,ila, z,] (respectively, K;i[z,, b],
K,l[z, b]). Then

’ 7
Ty S 0,=6,y |J 0, o0y,

Now let z, be any point on 7,l[a, z;) or T4!(z;, b]l. Repeating the arguments above, we find geodesics K;, ¥
which join @ to b, and such that z, z,€K;, K; K, Ks < 0., Killa, 2l < B'(p, s/2), K;llz,, bl = B'(q, s/2), Klla, 2l <.
B'(g, 5/2), Kellz,, bl =B (p, s/2) Ts=K;lla, 2.1 U Killz, bl =B'(p, s/2), T.= K,lla, 2] UK;|{z, bl = B'{q, s/2). More-
over, if aé {o7) is the closet subdomain bounded by the geodesics Ksila, z,], Kglia, 24] (respectively, K;iiz,,b],
Kgllzy, b)), then

’ "
Ty C03=03 [J 03 0,.



After n steps, we get two geodesics Ky, Koy, Which join a to b, and such that z;, ..., 2., € Ksu—y, Ki,,
Where Ziy ooy Zn—ie T, KZn—h Kznc()'n_‘, Kzn_‘“.a, Zn_ij CB,(p’ 3/2), Kzn-—il[-zﬂ—h bl CB’(Q, S/2>1K2n”a, Zn——i] CB’(q, 3/2),
erﬂl[zn—l’ bl CB’(p, 3/2), .TznTs EKzn_J[a/, Zn..l.l UKzn“zn—iy b} CB,(p, ) _3/2), N T21z—2EK2n”-Q, Zn_gj UKgn—ll[zn—t, bl =
B’(q, s/2). Moreover, if oy (o) is the closet subdomain bounded by the geodesics Kyp~1![4, Zn—], Konlla, zn-4]
(respectively, Kon-1![zn-1, bl, Konllzp-1, b)), then

Gy On=0y, U Oy < Ony.
The sequence {z,} may be chosen to be dense on %1.
Finally we get a sequence of geodesics {Mn}:=1, where My = Tyn-1, Mp+1 = Typ, which converges to the

arc 74 ([2], p. 39). Consequently, 7 is a geodesic. Since the spheres S(p, s /2) and S(g, s /2) are compact,
they are geodesics in the space M.

This proves (c).

(d) One may assume, with no loss of generality, that r{ = 7, i.e., 7 =38(p, s/2) N S(q, s/2) is a geodesic
with extremities a and b. Moreover, assume that 7, as the common part of the spheres S(p, s /2), has maxi-
mal length, and that it still remains a geodesic. To emphasize the dependence of 7 upon s, we write v = 7(s),

Let ¢ be the middle of geodesic T, and let pg be a geodesic which lies in into, except for its extremities
p, q. Let s' be arbitrary, 0 <s' <s, and let p;, g1 = pg such that p.=B(p, s/2), q.= Bly, $/2), plep,) =pleq,) =
s'/2. Obviously, any geodesic from the collection {(piq;)}:=: may be obtained as the restriction to [py, q4] of
a geodesic belonging to {(pg).er. . Since 7(s) is maximal, we see that S(p,, s'/2) N S(g,, s'/2) = S(p, s/2) N S(q, s/2)
and

sla(sN <slt(s)]  for: s' <5, 5)
where 7(s') is the common arc of the spheres S(p,, 3'/2) and S(q;, 8'/2).
Now let A(s) denote the maximal radius of a sphere with center ¢ entirely containedin o.
Then obviously 7
AlsY<A(s) for s <s. ©)

(e) If 5; =< s/2 and s8{ + sy = 8, then the spheres S(p, s{) and S(@, s,) have a common simple arc ¢(s;) with
extremities L; and L, and which is contained entirely in o, i.e.,

t(s,) =8(p, s)NS(g, s:)No=cNB(p, s,) NB'{g, ), o=[B(p, s)U B'lg, s:)] Na.
The proof of (e) is similar to the proofs of formulas (1) and 2).

() The arc £(s¢) is a geodesic for s; < min (s, A(S)) /2. Indeed, ¢(s;) lies on that part of the sphere S(q,
S,) which is the geodesic 7(2s,). This is a consequence of two facts: firstly, according to (5),

s[t(2s,)] = slt(s)] for s, <s/2
and secondly, for 2s; < A(s) = A(2s,) [see (6)] the arc £(s;) lies precisely on the arc 7(2sy) of 8(q, sp).

(g) Further, assume that the geodesics Lyl[p, a], Lylip, b], where a= L, and be L, are the extremities
of arc T(s), have the property that there are no geodesics pa, pb which contain points different from p, «, b
and which lie outside . Clearly, this assumption does not restrict the generality of the discussion.

Let Ky denote the sector bounded by the geodesics L,= L,|[p. al and Ly, where Ly = ga(f..1), and 9= I,(p)
is a rotation such that ¢(a) = 1(s)lle, cl, c the middle of arc 7(s). Then K, has the following properties:

iy) K,coNB'(p, s/2);
ip) the angle 6, between i1 and Ly at point p is different from zero;
iz) there is ¢ such that bp = 2nm (n = 1, *2,...).

Indeed, i;) is a consequence of the assumption about o made at the beginning of (g). Suppose that i,) does
not holdforK, i.e., 6, = 0. According to (f), for the sector K, we have a sufficient criterion of the additivity
of angles ([13], p. 21). This implies that the angle of sector K is zero. If we now rotate K, around the point
p using I,(p) we can get a partition of the ball B(p, s /2) into a finite number [recall that the curve S(p, s /2)
is rectifiable] of successively adjacent sectors Ky, . . ., Ky similar to Ky, i.e., all having angle zero. But
this shows that the total angle around point p is zero, which contradicts axiom (A5). Thus i,) is true.



To see that one can find a sector Ky with §, # 2nw, assume the opposite, i.e., that 9<p = 2nn for all ¢.
Choose the sector Ky with minimal 6 and divide it into adjacent sectors Kpys oo v K‘Pm‘ The sum of the angles

of these sectors is Zew> 6y, which contradicts the additivity property of angles for Kyp. Consequently, i3) is
true. ;

(h) Let Ky be a sector satisfying i;)-i3), and let Q= K, U (K;). Then Q is a sector bounded by the geo-
desics Ly and ¢(Ly) = ¢*(Ly). Its angle is different from 0 and 4n7. Set
N =1MNQ t< s <5 min(s,As),

where £(t) is a geodesic, §{t) =a N S(p, £) , and let a;, by and ct be the extremities and the middie of n{t), re-
spectively. The geodesic Ly is obviously the locus of the midpoints of arcs n(t}). We have t = plpas) = plph,) =
p(pet) and hence, the angles 6 between L; and ¢(Lg), satisfies

cos 0 = lim (f — A2/2¢%), Q)

{0
where A = s[n(B)].
On the other hand, 8, = << (Ly, Ly) = <<(Lq, ¢(Lg)) , and
cos By = lim {1 — A%/8£%). (8)
i-=0

The additivity of angles for Q yields
=< (zp Lq;) -+ < (Lq,, Q (L®)) . 26@,

i.e.,
9,, =0/2. (g)
Now (7) and (8) imply,
cos § = 4 cos Bw-—%._ (10)
while from (9) we get
cosﬁ:?.cos”-—g—-—i = 2 cos* B, — 1. 11

Finally, from (10) and (11) we get
cos* 8, —2¢cos B, +1=0,
which in turn implies cos bp =1, or fp = 2nm (n =0, £1,...). But 8y # 2n7. Contradiction,

This contradiction completes the proof of Theorem 3, and we see that one may take 7y = &,

5. PROOF OF THEOREM 4
(a) Since M is a complete space with intrinsic metric, it is boundedly compact ([13], p. 75).

If we are given two distinct points x and z, then the completeness of M ensures the existence of a geo-
desic xz. Consequently, if y=zxz, then (xyz), and so any complete r-gpace satisfies axioms @)~{II} for G~
spaces.

(b) Let us prove the validity of axiom (IV}), Given z& M, Lemma 2 of Sec. 4 shows that there is £ > 0
such that the ball B(u, ¢) admits a rotation for all u=B(z, &) . Take y, ze B(z, ¢/8). Then plyz) <e/4. Let
ve Sz, e/2) and since &< 8, there is a geodesic xv, Now let A and ¢ be rotations of the spheres Bx, £) and
B(y, ¢), respectively, such that y =Alzv], z = glalzvl]l, Since piyz) < € /4 and s(gpiilzv)lily, Ae)) > 3¢/8, there is
a point u on the geodesic ¢li(zv)ily, A}l such that (yzu). The choice py = € /8 proves (b).

{c) M satisfies axiom (V). Indeed, let x, y, z;, z, be points such that (yxz), (yxz,) and plz,) = plxz,).
Let us show that z; = z,. There are geodesics yz; and yz, such that z=yz: and r=yz ([2], p. 44). With no
loss of generality, one can assume that yzllz, zJ N yzllz, 2.0 = {y} and yzlly, 2] = yzlly, z}. Nowuse part(b) from
the proof of Theorem 3 and let U = B(x, g(), as in (b). Choose ueyzlly, z1 and u*z, wisyzllaz] (=1, 27,
such that pluz)=plzw,) = plzw.) =e/4 . Moreover, let o =L{u) be a rotation taking wy into w,, i.e., o) = wy.
Then L =yz,|[u, wy] and L, =0{yz,![u, w4]} are geodesics joining u and wy, and L, L. =B, £/2) = Bz, &) =U.



Let v be the midpoint of the geodesic yzl[u, x], and let A=I(¥) be a rotation which takes u into x. Then A(Ly)
and A(L,) are two geodesics which join x with Mw,) = U, However, A(L,) does not coincide to A(Ly), because L,
is not the same as Ly: by Proposition 1 of Sec. 3, ¢(y) # y, while y=L,, and ¢(y) = L,. But the existence of
distinct geodesics which join x with A(wy) contradicts Theorem 3, and this proves (c).

d) Consequently, M is a Buseman G-space. Now we see that Theorem 4 is a result of Theorem B [2].
This completes the proof of Theorem 4.

Proof of the Corollary, The two-dimensional locally Euclidean G-spaces are described in [2], They
are: Euclidean plane, cylinder, Mobius band, torus and Klein bottle, The only two-dimensional locally
spherical G-spaces are the sphere and the projective plane [2], The description of the two-dimensional locally
hyperbolic spaces is given in [7] (see also [2]).
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PROOF OF THE VAN DER WAERDEN CONJECTURE
FOR PERMANENTS

G. P, Erorychev UDC 519.10+3.918.3

1°, We prove (Theorem 1) the validity of the van der Waerden conjecture, formulated by him in 1926
({1; 2, p. 155, Conjecture 1]),regardingthe minimum of the permanent of a double stochastic matrix. In the
course of the proof one answers positively (Theorem 2) the Marcus —Newman conjecture on the permanent of a
doubly stochastic matrix ([2], p. 156, Conjecture 11; [3], Conjecture 11). The proof of Theorem 2, and with
it also that of Theorem 1, is based on the representation of the permanent in terms of mixed diseriminants
and on the subsequent use of a geometric inequality for the permanents (Lemma), which follows directly from
Aleksandrov's known inequalities for mixed discriminants [4]. The reduction from Theorem 2 to Theorem 1
is known and is based on the results of [5, 6]. As a consequence of Theorem 1 we obtain lower estimates, for-
mulated previously by other authors (see [2], Sec. 8.2; 7, 8) under the assumption of the validity of the van der
Waerden conjecture and improving in an essential manner the known estimates for the number of Latin rect-
angles and squares, the number of nonisomorphic Steiner triple systems and for the key constant Aq in the d-
dimensional dimer problem. We indicate some other applications of the results obtained in the paper.

2°. By the permanent of an n X n matrix A = (aj;) over the field of complex numbers we mean the ex-
pression (see, for example, [9])
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