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Cons ider  a m e t r i c  space  M with m e t r i c  p and a s s u m e  that it has the following proper ty :  for  each point 
x E M there  exis ts  a sphe r i ca l  neighborhood (ball) of x,  B(x, 5x), 5 x > 0, which admits  a rotat ion in the s ense  
of Buseman,  i .e . ,  for  any points a, a ' ,  b, b'  E B(x, 5 x) such that p(xa) =p(xa'), p(xb) =p(xb ' ) ,  andp(ab) = p x 
(a 'b ' ) ,  the re  is an i s o m e t r y  map of the ball B(x, 6 x) onto i t se l f  which keeps x fixed and takes a into a '  and b 
into B ' .  Our p rob lem is: when is the universa l  cover ing  space  of M i s o m e t r i c  to the Euclidean plane, to the 
Lobachevski  plane, o r  to the two-dimens iona l  s p h e r e ?  

This p rob lem may be in t e rp re t ed  as a local  ve r s ion  of the wel l -known H e l m h o l t z -  Lie conjec ture .  The 
mos t  s a t i s f ac to ry  solution of the l a t t e r  is given in F reuden tha l ' s  paper  [1], where  the following resu l t  was ob- 
tained.  

Le t  M be a connected,  local ly  compac t  me t r i c  space ,  and let F be a doubly t rans i t ive  group of homeo-  
m o r p h i s m s  of M (i.e.,  given two a r b i t r a r y  pa i r s  of points in M, the re  is an e lement  of F which takes the f i r s t  
pa i r  into the second).  M o r e o v e r ,  let  M and F sa t i s fy  the following axioms:  

(S) given two a r b i t r a r y  c losed subse t s  of M, A and B, A NB----~,  there  is an open subse t  U of M, U ~ q), 
such that fo r  any ~ ~ F e i ther  X(U) N A = g ,  o r  )dU) N B = ~; 

(V) the group F is comple te ;  

(Z) let  Jx0 be the i so t ropy  subgroup of F at  a point x0 ~ M. Then there  is an orbi t  Jx0(Y) which s e p a r a t e s  
the s p a c e  M. 

Then M is a l ready  a doubly t r ans i t i ve  homogeneous space  in the sense  of B i rkhof f -Wang ,  and, in p a r -  
t i cu la r ,  M is a Euclidean space ,  a hyperbol ic  space ,  o r  a sphe re ,  while F is a c losed subgroup of the c o r r e -  
sponding group of i s o m e t r i c s .  

Analogous r e su l t s  w e r e  obtained by o thers  [2-6]. The typical  method used in these  papers  is global and 
r e l i e s  mainly  on r e su l t s  f r o m  theory  of Lie groups .  However ,  the following local va r i an t  of the solution to the 
H e l m h o l t z - L i e  p rob l em,  due to Buseman,  is known. 

THEOREM B. Let  (M, p) be a G - s p a c e  such that  each point x E M has a sphe r i ca l  neighborhood B(x, 6x) , 
6x > 0, which admi[s  a ro ta t ion  in the s ense  of Buseman.  Then the un iversa l  cover ing  space  of M is e l emen ta ry ,  
i .e . ,  Eucl idean,  hyperbol ic  or  a s phe re  ([2], p. 411). 

Recal l  that  accord ing  to Buseman  a G - s p a c e  is any space  which sa t i s f i e s  the following axioms:  

I. <M, p> is a m e t r i c  space .  

IL (M, p> is boundedly compac t ,  i .e . ,  any bounded infinite subse t  has at l eas t  a l imi t  point. 

III. Given a r b i t r a r y  dis t inct  points x ,  z ,  the re  is a point y such that (xyz), i .e . ,  y ~ x,  y ~ z and p{xy) + 
p(yz) = p~xz). 

IV. Given any point x E M, there is a positive number Px such that for arbitrary distinct points, y, z in 
the open ball B(x, Px) there is a point u such that (yzu). 

V. If (xyzl), (xyz2), and p(yz I) = p~z2), then z I = z 2. 

Although Buseman's result is the only attempt known by the author to solve the Heimhoitz-Lie problem 
from the local point of view, it does not give a complete answer to the problem stated at the beginning of this 
paper. Indeed, the local uniqueness if the geodesic joining two points x, y~B(p, pp) is a direct consequence of 
axioms IV and V, and this is such a strong assumption that it should be dropped. We remark that in introducing 
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the notion of a G-space ,  more  general  questions than that of finding a d i rec t  solution to the He lmhol t z -  Lie 
problem were  posed. Below we discuss  a sy s t em of axioms whose specific purpose is to lead to an answer of 
the problem formulated at the beginning of our paper. 

F r o m  now on, M shall denote a separable ,  locally compact ,  metr ic  space with intr insic metr ic  p. 

Denote by r(x) the lowest upper bound of all numbers  r > 0 such that the open ball B'(x, r) is a compact  
subset  of M. Fur ther ,  let pC<) be the lowest upper bound of all numbers Px > 0 such that given y, z~B(z ,  p~), 
then y is joined to z by a geodesic.  It is known that either p(x) = +~  for  all x ~ M  , or  the function p(x) is con- 
tinuous and takes only finite values.  

We now formulate  two axioms. 

(A l) Given any point x ~ M ,  there is d{x) > 0 such that if I(x) is the group of i sometr ics  of the bail B(x, 
d(x)) onto itself,  then I(x) acts effectively* and t ransi t ively on each sphere  S(x, r), 0 < r < d(x), and k~x) = x  
for  all k ~ I(x). 

(A 2) Given any point x ~ M ,  there  is 6 x > 0 such that 5 x < min (d(x), r(x), p(x)) and the following holds: 

a) the sphere  S(x, r) is connected for  all r ,  0 < r _< 6x; 

b) on each sphere  S(x, r), 0 < r -< 5 x there exist two dist inct  points ar ,  br  which separa te  S{x, r), i .e. ,  
S(x, r)\{a., b,} = A ,  U A2, where At N A2 = ~,. and A1, A 2 are  open nonempty subsets of S(x, r)\{ar, b.} ; 

c) given any r ,  0 < r - 5x, there  is an i s o m e t r y k ~ I ( x )  such that k(a . )~A,  and s [or k(a.)~A~, 
)~(b~)~A~ ]. 

We r e m a r k  that axiom (A 2) is a local var iant  of the axioms (S) and (Z) introduced by H. Freudenthal.  Here 
the role of condition b) is that of fixing the dimension of spheres :  we deal with one-dimensional  spheres ,  and 
hence with a two-dimensional  space M. 

THEOREM 1. Let the space M sat isfy axioms (A 1) and (A2). Then 

(1) S(x, r) is homeomorphic  to the one-dimensional  Euclidean sphere~ for all x E M and 0 < r ~- 5 x, 

(2) The group I(x) is a compact  one-dimensional  Lie group, and all its isotropy subgroups are  compact  
and zero-d imens ional .  

(3) The connected component of the identity of Ir acts effectively and transi t ively on S(x, rL  0 < r ~ 5x, 
and is i somorphic  to the Lie group SO(2). 

THEOREM 2.  Any space M sat isfying axioms (A1) and (A 2) is a two-dimensional  topological manifold. 

We need three more  axioms in o rde r  to solve the problem. 

(A 3) Given any point x ~ M ,  the ball B{x, d(x}) admits a Buseman rol~ation. 

(A 4) Given any point x ~ M,  there  is a point y ~ M such that p(xy) < rain (d(x)~ d(y), ~). 

(A 5) Given any point x ~ M, and any two geodesic s tar t ing f rom x, the angle between tbese geodesics exists 
in the sense  of A. D. Aleksandrov. Moreover ,  there are  at least  two geodesics s tar t ing at x between whom the 
angle is not ze:co. 

Axioms (A~) and (A 4) are  just  a s trengthening of axiom (A1). At the same time, axiom (A4) eliminates 
f rom considerat ion spaces with mult i - faced met r i c s ,  which a re  not e lementary.  

Definition. A space M which sat isf ies  axioms (A~)-(Ah) is called an r - space .  

THEOREM 3. Let M b e a n  r - space .  Then for each x ~ M  one can find a number ~?x, 0 < Nx <- 6x, such 
that any point y ~ B(x, ~l~) may be joined to x by a unique geodesic.  

This theorem is the key resul t  in all our study. Its proof is quite complicated and lengthy (Sec. 4). 

The next theorem gives the answer to the problem solved in this note. 

THEOREM 4. Let M be a complete r - space .  Then M is a two-dimensional  Buseman G-space,  whose 
universal  cover ing space is e lementary ,  i .e. ,  the Euclidean plane, the Lobacevski plane, or  the sphere.  

*If the action of I(x) on S(x, r0) , 0 < r 0 < d(x), d(x) -< pCx), is not effective~ then the geodesic joining some point 
y ~B(z, d(x)) with x is not unique (V. N. Berestovskii). 
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COROLLARY. Any comple te  r - s p a c e  is one of the following spaces :  a sphe re ,  a pro jec t ive  space ,  a 
Eucl idean plane,  a cy l inder ,  a to rus ,  a M~bius band, a Klein bottle,  o r ,  f inally,  a two-d imens iona l  locally 
hyperbol ic  space;  there  is an infinite number  of spaces  of the last  type, but the i r  descr ip t ion  is known [7]. 

Remark .  An r - s p a c e  which is not comple te  is  not a Buseman G-space .  Moreove r ,  there  a r e  incomplete  
r - s p a c e s  whose universa l  cove r ing  spaces  a r e  not i s o m e t r i c  to e l emen ta ry  ones: cons ider  the punctured 
Eucl idean space .  

The resu l t s  in this paper  w e r e  prev ious ly  announced in [8]. 

Final ly ,  I would like to thank V. A. Z a l g a l l e r  and V. N. Beres tovsk i i  for  the i r  valuable  r e m a r k s  and 
help. 

1.  N O T A T I O N S  

In this paper  we use the following notations: 

p(a, b)) the d is tance  between points a, b; ab) a geodesic  with ex t r emi t i e s  a and b; S(L)) the length of the 
cu rve  L; L][a, b]) the piece of cu rve  L between the points a, b ~ L ;  

B(a, r)) the open bail  with cen te r  a and radius  r > 0; B ' (a ,  r)) the closed ball;  S(a, r)) the sphe re  with 
cen te r  a and radius  r > 0; 

~ )  the card ina l  of the se t  A; ord a A) the o rde r  of the topological  space  A at the point a [9]; 

S 1) the unit c i r c l e  in the Euclidean plane; X ~ Y) spaces  X, Y a re  homeomorphic ;  G ~- H) groups G and H 
a r e  i somorphic ;  intA) the in t e r io r  of the s e t  A; A) the c lo su re  of the se t  A; F r  (A)) the boundary of the se t  A. 

2 .  P R O O F  O F  T H E O R E M  1 

(1) Choose a number  r ,  0 < r ___ 6x, and let  a, b s e p a r a t e  S(x, r) ,  as guaranteed by condition b) of axiom 

(A2): 

Wri te  P.~S(x,  r)\{a, b} ~-Al UA2, At f l A , ~ ,  where  A1, A 2 a r e  nonempty open subse ts  of ~.. Since r. is 
open in S(x, r ) ,  A1, A 2 a r e  open inS(x , r ) .  F u r t h e r m o r e ,  s ince S(x,  r)~4t z A a U  (a, b}, then ~,  ~As U {a, b}. Co n se -  
quently,  Fr (As)~ {a, b} . We r e m a r k  that  he re  the c losu re  and boundary a re  taken re la t ive  to S(x, r).  Now let 
p e A l ,  q e A ~  be a r b i t r a r y  points.  Then zTl fl (q} ~ and F r  (A 1) -< 2, i .e . ,  ordp,qS(x, r) - 2. According to 
ax iom (A2), condition c),  t he re  is a ~ .e  I(x) such that  ~(a) e Al, ~(b) e A2. T h e r e f o r e ,  we get o rdMa ),k(b)S (x, 
r) _< 2. Since k is an i s o m e t r y ,  orda,bS(x,  r) -< 2. 

Now let  p e S(z, r ) ,  p # a,  b, and a s s u m e  that p e At. Then there  is e > 0 sma l l  enough to ensure  that 
B(p, 8) fl S(x, r ) ~  A~, and that B(a, g)fl As ~ ~, B(b,  ~)n As ~ . We c l a im  that  the point p cannot  be isolated:  
a s suming  the c o n t r a r y ,  ax iom (AI) would imply  that the sphe re  cons is t s  only of isola ted points,  and, being 
compac t ,  the num ber  of these  points is finite and each one is an open subse t  of the sphere .  But this cont radic ts  
the connectedness  of the sphe re .  T h e r e f o r e ,  there  a re  points ae,  b a such that  a~eB(a,  8)flA~ , b,~B(b ,  8) flAz , 
and the re  a r e  i s o m e t r i c s  ~, ~" e I ( x )  such  that Ma) = ae ,  X~(b) = be. Then ~(p), ~ ' ( p ) e B ( p ,  e)flA~. As we proved 
above 

ord~p),x~a)S (x, r) ~ 2, ord~.,(10),k,(b)S (x, r) ~ 2. 

Since k, X' a r e  i s o m e t r i c s ,  ordp.,S(x, r), ord~. ~S(x, r) <~ 2. 

In conc lus ion ,  the inequali ty 

ord, ,~(x,  r ) <  2 '  

holds for  all points p, q ~ S(z, r ) .  

By T h e o r e m  9 of ([9], p. 291}, 

ordp S(x, r) <~ 2, 

for  all  points p ~ S ( x ,  r) , i .e . ,  S(x, r) is a r egu l a r  space .  Let  us show that ordpS(X, r) = 2. Assume  the con-  
t r a r y ,  i . e . ,  that there  is a point P0 such that ordp0S(x, r) - 1. Then axiom (A 1) shows that ordqS(x, r) -< 1 for  
all  points q ~ S ( x ,  r). Now, by T h e o r e m  1 of ([9], p. 295), the s e t  S(x, r)\{a} is connected.  But b ~S (x ,  r)\{a} 
and ordb(S(x, r)\{a))~< t (Theorem 3 of [9], p. 283). Consequent ly,  S(x, r) : {a ,  b} is connected,  which con t r a -  
dicts  condition b) of axiom (A2). 
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T h e r e f o r e ,  ordpS "(x, r) = 2. Now, T h e o r e m  6 of ([9], p. 299) or T h e o r e m  8" of ([9], p. 302) shows that  
S(x, r) ~ S t. 

Step 1 is proven.  

(2) The ball  B(x, d{x)), being a subse t  of a s e p a r a b l e ,  loca l ly  c o m p a c t  space  with an in t r ins i c  m e t r i c ,  is 
a connec ted ,  s e p a r a b l e ,  loca l ly  c o m p a c t  m e t r i c .  Since I(x) is the i so t ropy  subgroup  of the g roup  of all i s o -  
m e t r i c s  of B(x, d(x}) onto i t se l f ,  it can  be endowed with the c o m p a c t  open topology.  Thus ,  I(x) becomes  a c o m -  
pac t  cont inuous  group of t r a n s f o r m a t i o n s  of the bait  B(x, d(x)) ([10], T h e o r e m  2.5,  Chap. IV).* The group  I(x) 
ac ts  e f fec t ive ly  and t r a n s i t i ve l y  on the s p h e r e  S(x, 5x) , which  is a o n e - d i m e n s i o n a l  manifold ,  h o m e o m o r p h i c  to 
S ~. Consequen t ly ,  I(x) is a Lie g roup  ([11], T h e o r e m  75) of d imens ion  1 [12]. We see  that  any i s o t r o p y  sub -  
g roup  of  I(x) is c o m p a c t  and z e r o - d i m e n s i o n a l .  

(3) Let  K be an i s o t r o p y  subgroup  of I(x}. Then the quot ient  space  X = I ( x ) / K  has a unique analy t ic  s t r u c -  
t u re  such  that  I(x) is a Lie  g roup  of  t r a n s f o r m a t i o n s  of  the manifold  X ([10], p. 132). B u t X  ~ S(x, 5x) , and so  X 
is c o m p a c t ,  connec ted  and o n e - d i m e n s i o n a l .  As such  X is d i f f eomorph ic  to S ~, We obtain that  the connec ted  
c o m p o n e n t  I0(x) of the ident i ty  of I(x) ac ts  e f fec t ive ly  and t r ans i t i ve ly  on X ~ S(x, r ) ,  0 < r -< 5 x ([10], p. 132]. 
Since the Lie g roup  I0(x) is connec ted ,  o n e - d i m e n s i o n a l ,  and c o m p a c t ,  I~(x) = SO(2). 

T h e o r e m  1 is proven.  

3. PROOF OF THEOREM 2 

I. Proposition 1. There is no isometry k~I0(x), different from the identity which keeps fixed some point 
y ~ S(x, r), 0 < r ~ G. 

Indeed,  let s such  that  X is not the ident i ty ,  but sa t i s f i e s  MY) = y fo r  s o m e  y ~ S ( x ,  r) . Fix an 
o r i en t a t i on  of the s p h e r e  S(x, r ) ,  i .e . ,  a d i r ec t ion  on the c losed  J o r d a n  c u r v e  S(x, r). Let  e > 0 be s m a l l  enough, 
s u c h  that  e < P(arbr) , w h e r e  a r ,  b r a r e  the points d i s c u s s e d  in condi t ion b) of ax iom (A 2) and the s p h e r e  S(y, e) 
is c o m p a c t ,  S(y, e) ~ S 1. Then S(y, e) fl S(x, r) is a nonempty  c o m p a c t  subse t  of M. Now choose  points z l ,  z2 
such  tha t  if we w r i t e  LI(Y, zl) ,  L2(Y, z 2) for  the c o m p a c t  a r c s  of  the s p h e r e  S(x, r) wi th  e x t r e m i t i e s  y ,  zl and 
y,  z2, r e s p e c t i v e l y ,  and which  a r e  conta ined en t i r e ly  in the c losed  ball  B ' (y ,  e}, thenL,(y,  z+)fi iS(y, s)A S(x ,  
r)] = {z+} ( i =  t, 2) ,  and (L~(y, z+)\{z+})[1 iS(g, e) fl S(x, r)] = r Then two c a s e s  a r e  poss ib le :  k(zl) = zl o r  Mzl) = 
z 2. The second  poss ib i l i ty  mus t  be e l imina ted ,  because  k does not p r e s e r v e  the o r i en ta t ion  of S(x, r) ,  and this 
c o n t r a d i c t s  the connec t ednes s  of the g roup  I0(x). Cons ide r ing  the f i r s t  c a s e ,  we get  that ,  in gene ra l ,  the point 
z~ a r b i t r a r i l y  c lo se  to y is a l so  fixed. Since the sphe re  S(x, r) is c o m p a c t ,  the l a t t e r  impl ies  Mz) = z f o r  all 
z E S ( x ,  r) .  This  con t r ad i e t s  ou r  hypothes i s  that  X is not the ident i ty  of I0(x), while  I0(x) ac t s  effectively- on each  
s p h e r e  S(x, r ) ,  0 < r s 5 x [which shows tha ton ly  the identity- of  I~{x) can be the ident i ty  i s o m e t r y  on S(x, r)].  

This comple t e s  the p roof  of  P ropos i t i on  1. 

2. P r o o f  of T h e o r e m  2. Let  y0 ~ S(x, 6,) and let L be any geodes ic  joining x to Y0. We p a r a m e t r i z e  the 
g roup  I0(x) by a p a r a m e t e r  ~, 0 -< (p < 2=, i . e . ,  we choose  a cont inuous b i jec t ive  map ~ :  [0, 2 ~ ) + I + ( x ) ,  which  
is poss ib le  because  I0r mS0(2) .  Obviously ,  given any ~ [0, 2=), ~q'(q0)(L) i n t e r s e c t s  the sphe re  S(x, r} ,0  < 
r s 5x, at  a unique point. Now pick z ~ B ' ( x ,  G). Then one can find ~ , ~ [ 0 ,  2~) such  that  {z} =~'(r flS(x, 
p(xz)). The n u m b e r  q~z is uniquely d e t e r m i n e d  by z: if q~' ~ qPz and ~' has the s a m e  property- as ~z, i .e . ,  {z} = 
~ ' ( r  fl S(x, o(xz))( then ,z  = s =~(r w h e r e  {z0} = L  A S(x, p(xz)). But then [~(q~')J-~ o ~F(~p,)(z+) = zo, 
while  the i s o m e t r y  [~(r o~'(r not the identi ty of I0(x). This con t rad ic t s  P ropos i t i on  1. 

Let  KE be the c losed  d i sk  in the Euc l idean  plane E 2 defined in polar  coo rd ina t e s  (r r) by the re la t ions  
0 ~ q D < 2 n ,  0 < r ~ G .  Define a map f :  B ' fx ,  5 x) - -  K E by f(z) = (q~z, p(xz)), z ~ B ' (x ,  fix)* 

Since I0r ac t s  t r ans i t i ve ly  on e v e r y  sphe re  S(x, r ) ,  0 < r _< 5x, f is defined on the en t i r e  ball  B ' (x ,  5x). 
A c c o r d i n g  to P ropos i t i on  1, f i s  o n e - t o - o n e .  Now let us show that  f is s u r j e c t i v e ,  i .e . ,  that  it maps  B' (x, 5 x) 
onto K E. If (% r) E K r ,  then, obvious ly ,  z =  rGv(cp)(L) AS(x, r )~B ' (x ,  G) and f(z) = (q~, r).  Consequent ly ,  f is a bi-  
j ec t ion  f r o m  B' (x, 5 x) onto KE. It r e m a i n s  to c h e c k  that  f is a h o m e o m o r p h i s m .  Now f-1 maps  the c o m p a c t  se t  
K E onto the Hausdor f f  s p a c e  B ' (x ,  5x) , and so  it suf f ices  to show that  f-1 is cont inuous .  Let  (r r n) - -  (q~, r) 
as n - -  ~. Set  z ,  = (.F(q~,)(L) N S(x, r,), z = G~'(r N S(x, r). Then z~, z ~ B'(x, G) and f-l(q~n, rn) = Zn, f-l(q~, r) = z. 
Since $f(q~=)-*-~(r as  n -  ~,  ~a~(qv,)(L)+~(cp)(L) as n - -  ~ (here the c o n v e r g e n c e  is unders tood  as fol lows:  the 
geodes i c s  ~(r~,)(L) and ~'((p)(L) a r e  p a r a m e t r i z e d  by a p a r a m e t e r  t ~  [0, t ] ,  and .qC(;p,)(L)(t)-~(cp)fL)(t) as 

*In T h e o r e m  2.5 of [10] the space  c o n s i d e r e d  is a Riemann space .  However ,  the p roof  c a r r i e s  ove r ,  wi thout  
e h a n g e s ,  to a connec ted  s e p a r a b l e  m e t r i c  space .  
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u -  ~) .  Analogously S(x, r n) --* S(x, r) as n - -  :o [the parametr iza t ions  of S(x, r n) and S(x, r) a re  given by 
~((p) ]. Consequently, z n - - z  as n ~ ~. In other words ,  f-~ is continuous, f is a homeomorphism,  and so M 
is a two-dimensional  topological manifold. Theorem 2 is proven. 

4 .  P R O O F  O F  T H E O R E M  3 

1. LEMMA 1. If B(p, rp) and B(q, rq) admit (Baseman) rotations and P(Pqt) = P(Pq) < rp, then B(ql, min • 
(rq, r p -  p(pq)) admits a rotation. 

A proof is given in ([2], p. 408, Theorem (48.1)). 

LEMMA 2~j Let x ~ M. There  is a number e, 0 < s < 5x, such that the ball B(u, e) admits a rotation for 
all points u ~ B(x, e ) .  

Proof.  In L e m m a  1, take q = x and p = y ,  where  y is the point corresponding to x by virtue of axiom (A4). 
By Lemma 1, the ball B(v, min(d(x), d(y) -PC<y)) admits a rotat ion for  any point v~S(y ,  p(xy)) . Now, let 
a, b ~ S (y ,p (xy ) )  be points which separa te  the sphere  S (y, p{xy)) [condition b), axiom (A2) ]. Since p(xy)< 6~, 
S(y, p ( x y ) ~ S  l ,  and hence S(x, r) f iS(y,  p(xy))is  a nonempty set  for  all r ,  0 < r ~ p L a b ) .  Let ~==min (d(x), "6~  
p(xy), p(ab)) and ~---minCd(x), ~ -p (xu ) .  p(ab)), where  u ~ B ( x ,  "e) is a rb i t ra ry .  Since e '~p(ab) , one can find 
a point v ~ S(x, o(xu))fl S(y, p(xy)). Denote by k E I{x) a rotation such that k(x) = x, k(u) = v. Then 

~,[B(u, ~.)J ~ B(e, rain (d(x), d(y) - pCxy)). 

This shows that the ball B(u, flu) admits a rotation. Indeed, let a, a', b, b ' ~ B ( u ,  ~ )  be the points ap- 
pearing in the definition of the rotation. Then a rotation ~ of the ball B(u, flu), which takes a into a t and b into 
b T is given by ~ ----- ~-I ~ e o ~, where  0 is a rotation of the ball B(v, min (d (x), d (y) - p  (xy))! taking k(a) into k(a v) and 
k(b) into k{bT). Now take e= ~ /2 .  If p(xu)< ~, then flu -> s, i .e. ,  the ball B(u, e) admits a rotation. Lemma 2 is 

proven. 

2. P roof  of Theorem 3. Assume that the theorem is not true. Then there is a point x ~ M with the prop-  
er ty  that given arly ~, 0 < T? _<Sx, one can find a point y ~ B ( x ,  ~) which can be joined to x by more  than one 
geodesic.  Denote by (xy)~, ~ ~ I , the geodesics  joining x to y,  where I is a set  indexing alI such geodesics.  

{a) Let us show that I is an infinite set.  If not, i .e. ,  if 1 < [ < ~ and ~ = m, m a natural  number,  we let 
~ 2 ,  ~ ,  ~ I ,  and let ~?' be a number  such that ~ '<8=,  11" <p(xy) ,  and (xy)h fl S(x ,  ~i') {z}, (xy)~ [1 S(x,'O')--'-- 
{m}, z q  = w. Then there a re  at most  m - 1 geodesics  f rom the family {C=y),},~z which pass through z. Moreover ,  

which, as one can easily see ,  contradicts  the assumption made at the onset of this proof. Indeed, let L'  be an 
m- th  geodesic ,  different  f rom the geodesics  of the family {(xz)j}j~ and joining x and z, and let L" = (xy)i~l[z , y] 
be a geodesic with ext remit ies  z and y. Then L---- L" U L" i s  a geodesic  with ends x and y. But  L ~ ((xy),h.z, 
since the piece L v of this geodesic  is "new" [i.e., it is not the r e s t r i c t ion  of a geodesic  f rom the famity{(xy~L~z]. 

Contradiction. 

(b) By Lemma 2, there  is e > 0 (e < 5 x) such that the ball B(u, e) admits a rotation,  for  all u ~ B ( x ,  e) .  
Choose a radius ~x such that the baLL B(x, tt x) is homeomorphic  to an open disk in the Euclidean plane, and 
set  e 0 = rain (ttx, e / 3 ) ,  U = B(x, e0). Then any ball B(u, e0), u ~  U , admits rotat ions,  and all such rotations are  

defined on the entire space  U. 

There  are  two geodesics  (xy)i~ and (xy)i 2 such that one can find two distinct points p, q ~  (xy) h ~ (xy) h 
enjoying the proper ty  

q]] n lip, - -  q), 
i .e . ,  these geodesics  do not have common points between p and q. 

With no loss of general i ty ,  one may assume that p, q ~ U. Set 

Lx ---- (xy)~ x lip, q], L~ = (xy)~ ][p, q], s = ,  (L,) = s (L~) > O. 

Let cr be the closed subdomain of U, bounded by geodesics  L~ and L2. Obviously, a is homeomorphie to a 

closed disk in the Euclidean plane. 

Consider thebal ls  B(p, s/2),  B(q, s/2).  T h e r e i s  nopoint  w E in t~sueh tha tw~B(P,  s/2) andw ~B' (q, s/2), 
o r  w ~ B'(p, s/2) and w ~ B (q, s/2) : if this were not true, then there would exist a rect if iable curve L with extremi-  
ties p and q, whose length was s t r ic t ly  sma l l e r  than s ,  which is impossible.  
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Therefore ,  we have at most  

o 17 B'(p, s/2) N B'(q, s/2) = S(p, s/2) ~1S(q, s/2) ~ ~. (1) 

Moreover ,  the following equality holds 

[B'(p, s/2) U B'(q, s/2)] ~ ~ = ~. (2) 

Indeed, it suffices to show that through each point w ~ (~ passes a geodesic which joins p to q and s en- 
t i re ly  contained in ~. If w ~ Fr (~) , then w ~ L, or  w ~ L~. Now let w ~ int r and choose a poin~ v ~ L~ such that 
p(pv) = p(pw). Such a point exists ,  because w ~ B ' ( p ,  s). Then there  is a rotation X ~ I ( p )  with X(v) =w.  The 
geodesic X(L~) in tersects  L~ only at the point p (see Proposi t ion 1), but it cer ta inly in tersects  L2.' We replace 
the pieces of the geodesic X(LI) which lie outside G by the corresponding pieces of the geodesic L2. If u is the 
last  point of intersect ion of X(L~) and L2 [when we move f rom p towards X(q)], then the piece 7~(L~)t [u, Mq)] is 
replaced by L2i [u, q]. As a resul t  of these modifications, we get a geodesic pq=(;  passing through w. There -  
fore,  (2) is true. 

(c) The spheres  S(p, s / 2 )  and S(q, s /2 )  have a common arc  T, which is a geodesic.  

Indeed, S(p, s / 2 )  ~ S ~, S(q, s /2 )  ~ S l, and hence equalities (1), (2) show that 

= S(p, s/2) ~ S(q, s/2) fia 

is an a rc  homeomorphic  to the segment  [0, 1] of the real  line. Let  a, b ~ ,  a ~ b, be points close enough, such 
that all geodesics {(ab),}~r a re  contained in G. One can assume,  with no loss of general i ty ,  that there are  geo- 

desics (ab)i~, (ab)i2 sat isfying 

(ab) h f'l (ab)~ = {a, b} (3) 

and 

(ab)h ~ B' (p, s/2), (abh2 ~ B' Q, s/2) . (4) 

Indeed, if (3) does not hold, then one can choose a' E (ab)ip b ~ E (ab)i2 which satisfy (3), and replace a, b by 

a ' ,  b ' .  To verify (4), let, for example, (ab)h , (ab)~ ~ B' (p, s/2).  There is a rotation )~ ~ I(a) , with .~(p) = q and 

X(q) = p. Now let i ~ I ( q )  be a rotation sat isfying ~(X(a))=a, l~0~(b))=b. Then the i somet ry  /~ o~ maps B'(p, 
s / 2 )  onto B' (q, s / 2 ) ,  and takes a into a, b into b. Consequently, (~ o k)[(ab)il] ~ B' (q, s/2) is a geodesic joining 
a and b, and so (4) is true. 

Set KI = (ab)i~, K2 = (ab)i 2, and let G~ be the closed subdomain bounded by Kl and K 2. Clear ly ,  a~ ~ a  and 

v, =~l[a,  b] ~o~. Let z ,~x , .  Then there is a rotation ~,~I(a) such that z, ~}~(K,). Let z '  be the next point of 
intersect ion of the curves  k(K1) and K 2 after  zl [when we move on k(K1) f rom a to X(b)], and consider  the geo- 
desic )~(K,)l[a, z'] U K21[z', b] . Repeating, if necessa ry ,  the arguments  used to prove relations (4) and (2), we 
t r a n s f o r m  this geodesic into a geodesic K 3 joining a to b and sat isfying 

K, ~ (;,, K,l[a, z,J c B'(p, s/2), ts bl ~ B'(q, s/2). 

Similar ly ,  rotating K2 around a, we get a geodesic IQ joining a and b and enjoying the propert ies  

z, ~ K,, K4 ~ (;~, K~l[a, z,] ~ B'(q, s/2], K~l[z, b] c B'(p, s/2), 

f ~ =-- K3 l[a, z,] U K41 [ z .  b] ~ B ' (p ,  s/2), T2 ------- K~I [a, z,] U Ks I [z~, b] ~ B ' (q ,  s/2). 

Let G~ (G~) be the closed subdomain bounded by the geodesics K31[a, zl], K41[a, zl] (respectively,  K31[zl, b], 
K41[zl, b]). Then 

"~1 = ,;~ - ,:,.; U ,;~ ~ ,;1. 

Now let z 2 be any point on Til[a, Z~) or  7-~l(zl, b]. Repeating the arguments above, we find geodesics K~, I% 
which join a to b, and such that z,, z ~  K~, K~; K,, K , c  (;~, K~l[a, z~] ~B ' (p ,  s/2), K~[lz~, b] ~ B'(q, s/2), K~lta, z2] ~ 
B'(q, s/2), K~l[z2, b] ~B ' (p ,  s/2) T ~ K ~ I [ a ,  zzJ U K~I[z2, b] ~B' (p ,  s/2), T,=--K~l[a, z2] U K,[[z~, b ] c B ' ( q ,  s/2). More-  
over ,  if cr~ (G~) is the c loset  subdomain bounded by the geodesics Khi[a , z2] , tQl[a, z2] (respectively,  Khzi[z2,b], 
IQl[z 2, b]), then 

p 
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After  u s t ep s ,  we get two geodesics  K2n-1, K2n, which join a to b, and such that  z~, ... ,  z~_, ~ K~_,, K~, 
whe re  z~, ..., z,_~ ~ ~, K~_~, K ~  ~.-1, K2~_,lia, z~_~J ~B'(p,  s/2), K~,_~l[z~-~, b] ~B'(q,  s/2),K~li.a, z~-~] ~B'(q,  s/2), 
:K2~l[z~_~, b] ~B'(p,  s/2), T2~-~ ~-K2~-i[[a, z~-t] UK~IIz~-t, b] ~B'(p,  s/2), . T2,~-~K2~[[a, z~_,J 0K~_~[[z~_~, b] 
B'(q, s/2). Moreove r ,  ff a n (a~) is the c lose t  subdomain bounded by the geodes ics  K2n_~l[a , zn-~], K2nl[a, Zn-~] 
( respec t ive ly ,  K2n_~i[Zn_~, b], K2nl[zn_~, b]), then 

Tl ~ Gn ~ f f n  [J O n ' f i n - 1 .  

The sequence {Zn} may be chosen to be dense on T 1. 
~ o  

Finally we get a sequence  of geodesics  {Mn~n=;, where  M n = T2n_~, Mn+~ = T2 n, which converges  to the 
a r c  ~'1 ([2], p. 39). Consequent ly,  ~; is a geodesic .  Since the sphe re s  S(p, s / 2 )  and S(q, s / 2 )  a r e  compac t ,  
they a re  geodesics  in the space  M. 

This proves  (c). 

(d) One may a s s u m e ,  with no loss  of genera l i ty ,  that T; = T, i .e . ,  v,=S(p,  s/2) flS(q, s/2) is a geodesic  
with ex t r emi t i e s  a and b. Moreove r ,  a s s u m e  that  T, as the common  pa r t  of the sphe re s  S(p, s / 2 ) ,  has max i -  
mal  length, and that it s t i l l  r e m a i n s  a geodesic .  To emphas i ze  the dependence of T upon S, we wr i te  ~- = ~-(s). 

Let  c be the middle of geodes ic  ~, and let  pq be a geodes ic  which lies in in t a ,  except  for  its ex t r emi t i e s  
p, q. Le t  s '  be a r b i t r a r y ,  0 < s '  < s ,  and let  p~, q, ~ p q  such that p ~ B ( p ,  s/2), q ~ B ( q ,  s/2), p(cp i )=p(cq , )=  
s ' / 2 .  Obviously,  any geodes ic  f r o m  the col lect ion {(p,q,)~};., may be obtained as the r e s t r i c t i on  to [p;, q;] of 
a geodes ic  belonging to {(pq)~L,~.. Since ~(s) is max ima l ,  we see  tha t  S(p,, s'/2) fl S(q,, s'/2) ~ S(p, s/2) fi S(q, s/2) 
and 

stx(s')l ~<s[x(s)] for, s '  ~< s, (5) 

whe re  T(S') is the common  a rc  of the sphe re s  S(p 1, s ' / 2 )  and S(ql, s ' / 2 ) .  

Now let  A(s) denote the m ax i m a l  radius  of a sphe re  with cen te r  e ent i re ly  contained in ~T. 

Then obviously 

A(s') ~< h(s) for s' ~< s. (6) 

(e) If  sl  -< s / 2  and sl + s2 = s ,  then the sphe re s  S(p, s~) and S(q, s 2) have a common s imple  arc  ~(sl) with 
ex t r emi t i e s  L1 and I~ and which is contained ent i re ly  in a, i .e . ,  

~(si)----S(p, s,)fiS(q, s ~ ) f l o ~  fiB'(p, s,)fiB'(q, s~), a =  [B'(p, s,)U B'(q, sz)] fla. 

The proof  of (e) is s i m i l a r  to the proofs  of f o r mu la s  (1) and (2). 

(f) The a r c  ~(sl) is a geodes ic  fo r  s I < min (s, A(s ) ) /2 .  Indeed, C(s 1) l ies on that par t  of the sphe re  S(q, 
s 2) which is the geodes ic  T(2S2). This is a consequence  of two facts :  f i r s t l y ,  accord ing  to (5), 

s[~(2s,)] i> s[~Cs)] for sl~s/2 

and secondly ,  fo r  2sl < A(S) _ A(2S2) [see (6)] the a rc  ~(sl) l ies p rec i se ly  on the a rc  T(2S 2) Of S(q, S2). 

(g) F u r t h e r ,  a s s u m e  that  the geodes ics  Lll[p,  a], L2l[p , b], where  a ~ L ~  and b~L~ a re  the ex t r emi t i e s  
of a rc  T(s), have the p rope r ty  that  there  a r e  no geodes ics  pa, pb which contain points different  f r o m  p, a,  b 
and which lie outside a. C lea r ly ,  this a s sumpt ion  does not r e s t r i c t  the genera l i ty  of the discuss ion.  

Le t  K~ denote the s e c t o r  bounded by the geodes ics  El:=--L~l[p. a] and L~p, where  L~ = q~(L1), and (p~/0(p) 
is a rota t ion such that  (p(a)~ z(s)l[a, c ] ,  c the middle of a rc  T(S). Then K w has the following p r o p e r t i e s :  

is) K.~ai ' iB ' (p ,  M2); 

i 2) the angle 0~0 between L1 and I.~ at point p is d i f ferent  f r o m  zero ;  

in) there  is ~ s u c h t h a t  099~2nTr ( n = •  •  

Indeed, i0 is a consequence  of the assumpt ion  about a made at the beginning of (g). Suppose that  i 2) does 
notholdforKcp, i .e. ,  0ga = 0. According to (f), for  the s ec to r  K~ we have a suff ic ient  c r i t e r i on  of the additivity 
of angles ([13], p. 21). This impl ies  that  the angle of s e c t o r  K~ is ze ro .  If we now ro ta te  K~ around the point 
p us ing I0(p) we can get a par t i t ion of the ball B(p, s / 2 )  into a finite number  [recal l  that the curve  S(p, s / 2 )  
is rec t i f iable]  of s u c c e s s i v e l y  adjacent  s ec t o r s  K1 . . . . .  K m s i m i l a r  to K~, i .e . ,  all  having angle ze ro .  But 
this shows that the total  angle around point p is ze ro ,  which cont rad ic t s  ax iom (As). Thus i 2) is t rue .  
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To see  tha t  one can find a s e c t o r  K~ with 0(p r 2n~r, a s s u m e  the oppos i te ,  i .e . ,  tha t  0~p = 2 n r  f o r  all  r 
Choose  the s e c t o r  K~ wi th  m i n i m a l  0(p and divide it into ad jacen t  s e c t o r s  K ~ , . . . ,  K(p m. The s u m  of the angles  

of these  s e c t o r s  is ~ O ~ >  0r  wh ich  c o n t r a d i c t s  the addi t iv i ty  p r o p e r t y  of  angles  f o r  K~. Consequen t ly ,  in) is 
t rue .  

(h) Le t  t ~  be a s e c t o r  s a t i s fy ing  il)-i~), and l e t Q =  K, U (~(Kr Then Q is a s e c t o r  bounded by the g e o -  
d e s i c s  L~ and ~p(Lq~) = ~2(~) .  Its angle is d i f f e ren t  f r o m  0 and 4n ; .  Set 

= < T rain (s, A (s)), 

w h e r e  ~(t) is a geodes i c ,  ~(t) = z fl S(p, t) , and let at ,  bt and ct  be the ex t r emi t i e s  and the middle  of ~(t), r e -  
spec t i ve ly .  The geodes i c  L~ is obvious ly  the locus  of the midpoints  of a r c s  77(t). We have t = p ( p a , )  p(pbt) 
p(pct) and hence ,  the angles  0 between L~ and q~(L~), s a t i s f i e s  

cos O = l ira ( i  - -  ~.s/2t~), (7) 

w h e r e  X = sly(t)] .  

On the o the r  hand,  O~ = < (~'1, Lr = < (L~, q~ (Lv)), and 

The addi t iv i ty  of  angles  f o r  Q y ie lds  

i.e., 

Now (7) and (8) imply ,  

whi le  f r o m  (9) we get  

F ina l ly ,  f r o m  (10) and (11) we get  

cos O~ = lira (1 - -  X2/8t~). (8) 

O = < (~1,  Lr + < (L~,  r (L~)) = 29r 

O~ = 012. (9) 

cos 0 = 4 cos 0,  - 3.  (10) 

cos 0 = 2 cos~- ~ - -  - -  i = 2 cos ~ 0~ - -  t .  (11) 

cos ~ (}r - 2 cos 0, + t = 0, 

wh ich  in t u rn  impl ies  cos  8~ = 1, o r  0(p = 2nv (n = 0, :~1 . . . .  ). But 0(p r 2n~. Cont rad ic t ion .  

This con t rad ic t ion  comple t e s  the p roof  of T h e o r e m  3, and we see  that  one may  take ~?x = %. 

5 .  P R O O F  O F  T H E O R E M  4 

(a) Since M is a c o m p l e t e  space  wi th  in t r ins ic  m e t r i c ,  it is boundedly c o m p a c t  ([13], p. 75). 

If we a r e  given two d i s t inc t  points x and z,  then the c o m p l e t e n e s s  of M ensu re s  the ex is tence  of a geo -  
de s i c  xz .  Consequen t ly ,  if y E x ~ ,  then (xyz), and so  any comple t e  r - s p a c e  sa t i s f i e s  ax ioms  (D-(IIt) fo r  G-  
space s .  

(b) Let  us prove  the val id i ty  of ax iom (IV). Given x E M, L e m m a  2 of Sec.  4 shows that the re  is e > 0 
such  that the bal l  B(u, e) admi t s  a ro ta t ion  fo r  all  u ~ B ( x ,  e) . Take y, z ~  B(x, e/8). Then p ( y z ) < e / 4 .  Let  
v ~ S(x, e/2) and s ince  e < 5x, t he re  is a geodes ic  xv.  Now let  ~ and ~ be ro ta t ions  of the sphe re s  B(x, e) and 
B(y, e), r e s p e c t i v e l y ,  such  that  y ~ [ x v ] ,  z~q~[~[xv]]. Since p(yz) < e / 4  and s((~[Mxv)]l[g, M y ) l ) > 3 e / 8 ,  t he re  is 
a point u on the geodes i c  r k(u)] such  that  (yzu). The cho ice  Px = e / 8  proves  (b). 

(c) M sa t i s f i e s  ax iom (V). Indeed,  I e t x ,  y ,  z l ,  z2 be points such  that (yxzl), (yxz 2) and p(xzl) =pCxz2). 
Le t  us show that  z~ = z 2. T h e r e  a r e  geodes i c s  yzl  and yz  2 such  that  x ~ g z i  and x~gz2  ([2], p. 44). With no 
loss  of  gene ra l i t y ,  one can  a s s u m e  that  yzi[[x, z$ N yz2[[x, z2] = {y} and yz, l[g, x] = yz21iy, x].  Now use  p a r t  (b) f r o m  
the p roof  of T h e o r e m  3 and let  U = B(x, %), as in (b). Choose  u ~  gzil[g, x] and u # x ,  w ~  yz, Pixz,] (i = i, 2 ) ,  
such  that  p (ux)=  p(xw~) = p(XW~) = e0/4 . M o r e o v e r ,  let ~ I0(u) be a ro ta t ion  taking wl into w2, i .e . ,  r = w2. 
Then LI=YZ2[[u, w2] andL2=:~(yzl l [u , wl]) a r e  geodes ic s  joining u and w2, and L~, L , ~ B ( u ,  eo/2)~B(x,  e0)= U. 
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Let v be the midpoint of the geodesic yz~f[u, x] ,  and let  ~ I ( v )  be a rotat ion which takes u into x. Then h(L1) 
and I (L  2) a re  two geodesics  which join x with )~(w2) ~ U. However ,  A(L1) does not coincide to k(L2) , because L1 
is not the same  as L2: by Proposi t ion  1 of Sec. 3, r ~ y,  while ~(EL,, and r ~L2.  But the exis tence of 
d is t inct  geodesics  which join x with X(w 2) contradic ts  Theorem 3, and this proves (c). 

(d) Consequently,  M is a Buseman G-space .  Now we see  that Th eo rem  4 is a resu l t  of Theorem B [2]. 
This comple tes  the proof  of Theo rem 4. 

P roo f  of the Coro l l a ry .  The two-dimensional  local ly Euclidean G-spaces  a re  descr ibed  in [2]. They 
are:  Euclidean plane, cy l inder ,  Mitbius band, torus  and Klein bottle.  The only two-dimensional  locally 
spher ica l  G-spaces  a r e  the sphere  and the p ro jec t ive  plane [2]. The descr ip t ion  of the two-dimensional  local ly 
hyperbol ic  spaces  is given in [7] (see also [2]). 
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PROOF OF THE VAN DER WAERDEN CONJECTURE 

FOR PERMANENTS 

G. P .  E r o r y c h e v  UDC 519.10+3.918.3 

1 ~ We prove (Theorem 1) the validity of the van der  Waerden conjec ture ,  formulated by him in 1926 
([1; 2 ,  p. 155, Conjecture  1 ] ) , r ega rd ing the  minimum of the permanent  of a double s tochast ic  matr ix .  In the 
cou r se  of the proof one answers  posi t ively (Theorem 2) the M a r c u s - N e w m a n  conjec ture  on the permanent  of a 
doubly s tochas t ic  mat r ix  ([2], p. 156, Conjecture  11; [3], Conjecture  11). The proof of Th eo rem  2, and with 
it  also that of Theo rem 1, is based on the represen ta t ion  of the permanent  in t e rms  of mixed discr iminants  
and on the subsequent  use of a geomet r ic  inequali ty for  the permanents  (Lermna), which follows d i rec t ly  f rom 
Aleksandrov 's  known inequali t ies for  mixed d iscr iminants  [4]. The reduct ion f ro m  Th eo rem  2 to Theorem 1 
is known and is based on the resu l t s  of [5, 6]. As a consequence of Theorem 1 we obtain lower es t imates ,  fo r -  
mulated previously by other  authors  (see [2], Sec. 8.2; 7, 8) under the assumption of the validity of the van der  
Waerden conjec ture  and improving in an essent ia l  manner  the known es t imates  for  the number of Latin r e c t -  
angles and squares ,  the number  of nonisomorphic  Ste iner  t r iple  sys tems  and for  the key constant  X d in the d-  
dimensional  d imer  problem.  We indicate some other  applications of the resu l t s  obtained in the paper.  

2 ~ By the permanent  of an n • n ma t r ix  A = (aij) over  the field of complex numbers  we mean the ex- 

p ress ion  (see, for  example ,  [9]) 
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