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assumed that background metric tensor «yix describes a flat space-time [2-5]. We assume that «y; is a dynamical
variable which shall be determined from the extremity condition of the total action S = S, + Sy + S, where S,
is the action of the scalar field  [1] and

Sy = —%ﬁn[yikmk\/"_{;ddw‘ (2)

is the action of a free vk, Bo = 1/8nG, R is the Ricei tensor formed from i, and now G # 1/8xC is a
new constant. The assumption that ~yix is a dynamical variable allows to introduce an additional tensor field i
(see below). S, is the simplest expression that depends on Rix and similar to (1) is invariant under the scale
transformation ;. — a<ik, Where a is an arbitrary constant.

Varying S with respect 1o gix we come Lo the gravitational ficld equations
1 . 7y - -
BRix + (Bo — B) ik = Tk — §QikTu T = g™*Ti, (3)

where R;x is the Ricci tensor formed from g, and Tik is the energy-momentum tensor of the scalar field . Then
varying S with respect to v;x we have

(8= Bo)lVa/7(r*g™™ + 4" g™ = 4" g"™ = 79" )linm =0, (3)

where : denotes a covariant derivative with respect to v, and Ak = 6,‘;. In case of 8 = fo (4) reduces to an
identity and (3) transforms to the Einstein equations for ¢ with g = gix (). In case of 8 # o (4) transforms o
the field equations for ;. These equations have a partial solution v;x = agix for which again gix = gk () as it
follows from (3). In general case it may be introduced a tensor field 4;x by the relation ik = a(gix + tbix). Using
this definition of 1; the total action may be presented in the following form

o= bl‘v" = %(’6 = ﬁﬂ) -/gik(a:ua;:f T &{k&;:l]\«" "'_f}(r‘:f: = %ﬁﬂ / !i\f’ -y{[l:f; + 7, (5}

where Al = O.Sﬁl“(w,-k._n — Pnisk — Ynkit), 7" (gnk +Wnk) = 6L, R = g"* Ry and ; is a covariant derivative with
respect Lo g4k, o is an integral of a 4-divergence that may be omitted. Exp.(5) is the action of GI? for the system of
self-gravitating scalar  and nonlinear tensor ;) fields. Eqns.(3) also may be presented in the: form similar to the
usual Einstein equations if we introduce the following energy-momentum tensor

. : 1 s . !
lIl’k - (ﬁ STE ,80)[-”1& e Rik == Egikg m(an B H—nm)] (b)
for ¢ik. From (4) it follows that the weak tensor ficld ¥, and the weak gravitational wave propagating in the curved

space-lime are determined by the same equations. v

Eqns.(3), (4) and the field equation for ¢ allow to determine ¥k, gix and . Among the numerous solutions
there will be also solutions with elfective negalive pressure pesy = —p presenting a special cosmological interest
(1] (p is the energy density of the scalar and the tensor fields).
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The 4-dimensional wormholes are appeared as result of evolution of massive stars [1]. It can calculate their mean
number if 1o consider the stochastic process z = {z; : t € [0,00)}, where ¢ is not time (but ¢ = z° in 6-dimensional
theory of gravitation that it is used), in some probability space < @, S, P > with phase space < V,T >. Here
V is the set of all different universes that are formed from the Lorentz manifold W* by means of the attaching of
4-dimensional handles (4- wormholes). The topology 7 is described in [2].
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lLet g: V — Z C R be a function such that g(v) is the number of 4-wormholes of universe v. Suppose that
cvery v € V' has a neighborhood which does not contain w € V with g(w) # g(v). Then g is continuous and one
can consider the stochastic process g = {gom : L € [0,00)} with number phase space.

If process g o x is stationary measurable one and M {g o g} < oo then with probability 1

t
‘[im %/ gozs(w)ds = M{goxzy | L},

where L is o-algebra of invariant w-sets defined by means of process g o z. In a number of cases the conditional
mean M {go xo)} (that is the same for all £) is mean number of 4-wormholes in the Universe.

I Guts, A.K., Change of topology of physical space in closed universe, Soviet Physics J. 25(1982), No.5, 396-399

2 Guts, A.K., Stochastic evolution of space-time geometry, All-Russian seminar-school in stochastic methods in
geometry and analysis (Abstracts). Abrau- Durso.— Moscow, "TYP" publisher, 1994 (Russian)

Qualitative Tilted Homogeneous Cosmologies

C.G. HEWITT
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. E-mail:
cghewitt@math.uwaterloo.ca. Fax: (519) 746-4319 '

We discuss spatially homogencous cosmological models of Bianchi types 1T - VIT admitting a perfect fluid source
which does not flow orthogonal to the hypersurfaces of homogeneity. These models are classified into five sub-
classes according to the action of the Abelian Gz subgroup which they admit. Evidence is provided to support the
claims that:

a) Whimper singularities are not generic,

b) Only two of the five sub-classes admit chaotic behaviour.
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Studies of the dynamical behaviour of Bianchi-IX cosmologies near their spacetime singularities have included
methods where the original set of ordinary differential equations (derived from the Einstein equations) can be
approximated by discrete iterative maps that describe the dynamics as transitions from one Kasner solution to
another. These discrete maps (of the form x4, = F(z,) where n labels the iteration number) have been shown
to be chaotic in the sense that they have at least one positive Lyapunov exponent which measures the system’s
sensitivity on the precision with which one specifies the initial conditions. While much effort has focused on proving
that the discrete maps can provide an accurate description of the [ull continuous time dynamics particularly in the
regime where the maps themselves are chaotic, little work has been applied to understanding non-chaotic solutions
to the discrete maps and their relationship to the full dynamics.

In this work periodic solutions.are found to the Bogoyavlensky map [2] which represents an approximation to
the dynamics using the orthonormal tetrad method of Ellis and MacCallum [3]. The map is given as

4 — 5cosz,
E?E?o"s?,.)
on the interval 0 < z, < §. The periodic transitions allow one to specify the dynamical shear components which
act as initial conditions for the full set of Einstein equations,

The periodic solutions to the map lead to discrete self-similar solutions to the full set of ODE’s describing the
Bianchi-1X dynamics where there is a linear scaling in the logarithmic time coordinate. Rescaling the dynamical
variables recovers the periodicity of the Bogovnvlcnsky map in the continuous system. The rescaling also provides a
compactification of the phase space variables so that oné can usc the singularity avoiding logarithmic time coordinate
along with dynamical variables that remain finite for all time. (A compact phase space is necessary in order to discuss
the possibility of chaotic behaviour in nonlinear dynamical systems.)

Using the Belinskii, Khalatnikov, Lifshitz (or BKL) [4] approach to Bianchi-IX cosmologies one can derive a
discrete one-dimensional map between so-called “Kasner-epochs” and in the appropriate variables this can be written

Tniy1 = CO8T (



