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Abstract

The mass transfer of interstitial impurities in a crystalline lattice under the influence of the fast-moving deformation

disturbance of the type of a shock wave is considered. The velocity of the movement of the disturbance is supposed to

be compared with the characteristic velocity of the relaxation of the diffusion flux to its local equilibrium value de-

termined by the Fick�s law. The similar situation occurs in a number of experiments on the exposure of a solid to
dynamical external loads giving rise to such fast hydrodynamical processes in a sample that the local equilibrium as-

sumption, normally assumed for the macroscopic description of transport processes, is no longer valid. Considering the

diffusion flux among the set of independent variables we have derived a set of coupled hydrodynamic equations de-

scribing nonequilibrium behavior of a solid in the absence of local equilibrium in the system. Within the scope of the

proposed model it has been shown that in comparison with the local equilibrium system an enhanced mass transfer

occurs under local nonequilibrium conditions.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent experiments [1,2] on the irradiation of the

thin-film metal samples by high power ion beams (HPIB)

thin films of aluminium and silver on the niobium and

copper substrates were irradiated by carbon ions. The

considerable penetration depth of the film atoms into the

substrate, exceeding the length of the projective path of

carbon atoms, has been revealed in the irradiated sam-

ples. The estimation of the effective diffusion coefficients

has given the anomalously high magnitudes [1–3]

D � 10�2–10�4 sm2 s�1. The effect of the intensive mass

transfer by HPIB irradiation has been registered earlier

in work [4]. A similar effect has also been observed at

electron and laser irradiation of solids [5–7] and at shock

loading of the samples [8,9]. The complete explanation of

this phenomenon within the scope of the known diffusion

mechanisms has not yet been found.

One of possible causes responsible for the accelerated

mass transport is the shock wave, generated by irradia-

tion, which is able to induce the enhanced migration of

atoms on large depths [2]. In investigating this mecha-

nism of diffusion within the scope of the hydrodynamic

description usually one starts from the known diffusion

equation in which, according to Fick�s law, the diffusion
flux is defined by gradients of the concentration of a

diffusing substance, a pressure and a temperature. Such

approach is well justified if the disturbances occurring in

a system change slowly enough in comparison with the

characteristic rate at which the given system approaches

the local equilibrium. Meanwhile the interaction of par-

ticle beams with a solid induces in the latter rather fast

hydrodynamic processes with the characteristic times of

order or less than 10�8 s and the shock velocity can reach

several kilometers per second. Under these conditions

one should expect a significant deviation of the system

state from local equilibrium and the violation of Fick�s
law and take into account an influence of the relaxation

of the system on the process of mass transport.

In this paper we want to study within a simple model

basic features the impurity transfer in the relaxating

solid medium. More specifically the purpose of the work

is to research the interstitial diffusion in the field of the

fast moving deformation disturbance of the type of the

shock wave. The velocity of the movement of this dis-

turbance is supposed to be compared with the velocity of
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the propagation of concentration disturbances in the

medium. The latter condition just defines the condition

of absence of local equilibrium in the system [11]. The

task is also interest in connection with shock-compres-

sion experiments with metals containing considerable

atomic concentrations of interstitial hydrogen [12,13].

The description of the fast hydrodynamical processes

requires an extended number of independent variables,

defining the nonequilibrium state of a medium, in

comparison with conventional hydrodynamics. During

the course of short enough the characteristic time in-

tervals, in particular, the diffusion flux may not have

time to relax to its local equilibrium value, defined by

Fick�s law and it should be considered as independent

variable obeying some relaxation equation. The dissi-

pative fluxes (diffusion flux, viscous pressure tensor, heat

flux) included in the local conservative laws of mass,

momentum and energy are frequently exploited as ad-

ditional independent variables [10,11].

In Section 2 we determine the total set of the inde-

pendent variables suitable for the description of the fast

hydrodynamical processes in the crystalline solid with

interstitials. For these variables the derivation of the set

of the coupled hydrodynamical equations, including a

relaxation equation for the diffusion flux is given. Sec-

tion 3 is devoted to the investigation of the mass

transport in the field of fast-moving deformation dis-

turbance of the crystal in the absence of local equilib-

rium in the system. Resume and concluding remarks are

given in Section 4.

2. Derivation of hydrodynamic equations

In this section we want to derive the set of equations

relevant for the description of fast hydrodynamical

processes in the crystalline solid with interstitial impu-

rities. The complete set of the hydrodynamical equations

has to contain the local conservation laws of mass,

momentum and the equation for the entropy production

oq
ot

þ divqv ¼ 0; ð1Þ

oðqviÞ
ot

þ oPik

oxk
¼ 0; ð2Þ

oS
ot

þ div Sv
�

þ q

T
� m

qT
J

�
¼ R

T
: ð3Þ

Here q is the total mass density of the medium (lattice

plus interstitials), v is the mass velocity, S is the entropy
density of the medium, Pik is the tensor momentum flux

density, q is the heat flux density, J is the diffusion

flux density of interstitials, m and T are the chemical

potential of the interstitials per unit of volume and the

absolute temperature, respectively, and R (R > 0) is the

dissipative function of the medium; summation over

repeated Latin indices is implied.

Further we suppose that a concentration of vacancies

is negligible or their mobility is significantly less than the

mobility of interstitials so that the mass transport occurs

mainly by the interstitial motion. Introducing the mass

concentration of the interstitial particles c we write

down the continuity equation for the interstitial density

cq as follows:

oðcqÞ
ot

þ divðcqvþ JÞ ¼ 0: ð4Þ

It should be noted that the diffusion flux J, appearing in

Eqs. (3) and (4), is determined in a rest frame (moving

with velocity v relative to the laboratory frame).

Meanwhile for a crystal it is convenient to determine the

diffusion flux JL relative to a lattice. It is easy to see that

both fluxes are related by J ¼ ð1� cÞJL. As the mass

Nomenclature

c mass concentration of interstitials

E energy density

J diffusion flux density of interstitials

p pressure

Q energy flux density

q heat flux density

S entropy density of the medium

T temperature

t time

u displacement vector

uij infinitesimal strain tensor

V velocity of the deformation disturbance

VD speed of the propagation of concentration

perturbations

v mass velocity

xi coordinate

Greek symbols

d width of the transition region

l chemical potential of the medium

m chemical potential of the interstitials per

unit of volume

n dimensionless coordinate

Pik the tensor momentum flux density

pij viscous pressure tensor

q total mass density

rij elastic stress tensor

s relaxation time of the diffusion flux

u ¼ V =VD constant value
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concentration c � mp=mL, where mp and mL are masses

of an impurity particle and a host atom, then for light

impurities (type of hydrogen), occurring into a matrix of

heavy atoms, c � 1 even for the finite atomic concen-

tration. Because of this J ’ JL.

The variables q, v, c, S, (or T ) define conventional set
of the independent hydrodynamical variables for a

‘‘fluid-like’’ medium. A solid with point defects has the

extra independent hydrodynamical variable. This is a

displacement vector u defining displacement of lattice

sites [14]. In addition, according to above said, in the case

of fast processes the dissipative fluxes–diffusion flux J,

heat flux q and viscous pressure tensor pik must be in-

cluded among the set of independent variables. For

simplicity we shall assume that the relaxation times of

fluxes q and pik are considerably less than the relaxation

time of diffusion flux and during characteristic time of the

process under consideration the fluxes q and pik have

time to relax to their local equilibrium values [11]. In this

case diffusion flux J is the only new independent variable.

Thus we assume that quantities q, v, c, S, u, J com-
pletely define the nonequilibrium state of the system.

For such set variables the set of the hydrodynamical

equations (1)–(4) has to be supplemented by the equa-

tions for the displacement vector u and the diffusion flux

J. To derive these equations and define the still un-

known Pik , q and R, appearing in Eqs. (1)–(4), we use
the method originally applied in the theory of the su-

perfluids for the derivation of the equations of the two-

fluid hydrodynamics [15]. The main idea, in the given

case, is as follows. We shall find these quantities so that

the conservation energy law

oE
ot

þ divQ ¼ 0; ð5Þ

would follow from Eqs. (1)–(4) and the equations for _uu,
_JJ (an upper dot denotes the time derivative). In Eq. (5) E
and Q are the energy density and the energy flux density

of the medium, respectively.

The energy E is related by the Gallilean transfor-

mation to its value E0 in the frame, where a given ele-
ment of the volume of the medium rests, by the

relationship

E ¼ E0 þ
qv2

2
: ð6Þ

Let us now write down the differential of E0, considered
as a function of S, q, c, J and the infinitesimal strain

tensor uij in the form

dE0 ¼ T dS þ ldq þ mdcþ ~rrij d~uuij þ w 	 dJ; ð7Þ

here l is the chemical potential of the medium,

w ¼ oE0=oJ is the conjugate variables with J, and rij is

the symmetric, elastic stress tensor; here and further the

tilde is used to denote the traceless part of a tensor. In

Eq. (7) it has been taken into account that the variation

duii of sum of diagonal components of the strain tensor

uij is determined by the variation of the density dq.
Differentiating Eq. (6) with respect to time and using

Eq. (7), one obtains

oE
ot

¼ o

ot
qv2

2

� �
þ T

oS
ot

þ l
oq
ot

þ m
oc
ot

þ ~rrij
o _uui
oxj

þ wi
_JJi:

ð8Þ
Employing Eqs. (1)–(4) we can write down the time

derivatives as

o

ot
qv2

2

� �
¼ � v2

2

oq
ot

þ vi
oðqviÞ
ot

¼ �div qv2

2
v

� �
� vi

o

oxk
ðPik � qvivkÞ; ð9Þ

T _SS ¼ �Tdiv Sv
�

þ q

T
� m

qT
J

�
þ R

¼ �div TSv
�

þ q� m
q
J

�
þ v 	 rðTSÞ � T v 	 rS

� J 	 r m
q

� �
þ Rþ q 	 rT

T
þ TJ 	 r m

qT

� �
; ð10Þ

m _cc ¼ �mv 	 rc� div
m
q
J

� �
þ J 	 r m

q

� �
; ð11Þ

l _qq ¼ �divðlqvÞ þ v 	 rðlqÞ � lv 	 rq; ð12Þ

~rrij
o _uui
oxj

¼ o

oxj
ð~rrij _uuiÞ � _uui

o~rrij

oxj
: ð13Þ

Inserting Eqs. (9)–(13) into Eq. (8) and taking into ac-

count that

rE0 ¼ TrS þ lrq þ mrcþ ~rrijr
oui
oxj

� �
þ wirJi;

after long, though simple, transformations, one has

_EE ¼ �div qv2

2
v

�
þ TSvþ lqvþ q� _uu 	 ~rr

�

þ vk ~rrij
o

oxj

oui
oxk

� �
� vi

o

oxk
ðPik � qvivk þ ~rrikÞ

þ v 	 rð�E0 þ TS þ lqÞ þ Rþ q 	 rT
T

þ TJ 	 r m
qT

� �
þ ðvi � _uuiÞ

o~rrij

oxk
þ wið _JJi þ v 	 rJiÞ:

ð14Þ
Finally Eq. (14) can be rewritten as

_EE þ div
qv2

2
v

�
þ TSvþ lqvþ q� _uu 	 ~rr þ v 	 p

�

¼ Rþ q
rT
T

þ pik
ovi
oxk

þ TJ 	 r m
qT

� �

þ vi

�
� dui
dt

�
o~rrik

oxk
þ wi

dJi
dt

; ð15Þ
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where the viscous pressure tensor pik is defined from the

equality

Pik ¼ qvivk þ pdik � ~rrik þ pik ð16Þ

and the notations have been introduced

p ¼ �E0 þ TS þ lq; ð17Þ

and for the material derivative d=dt ¼ o=ot þ v 	 r.
In the derivation Eq. (16) we have neglected the term

of the second order of infinitesimal in strains ~rrjkoui=oxj
in comparison with the linear term ~rrik .

Eq. (16) defines the momentum flux density, where p
can be interpreted as ‘‘pressure’’ in the medium. Com-

paring further Eq. (15) with the energy conservation law

(5) we define the energy flux density Q and the dissipa-

tive function R as

Q ¼ qv2

2

�
þ E0 þ p

�
vþ q� _uu 	 ~rr þ v 	 p ð18Þ

and

R ¼ �q 	 rT
T

� pik
ovi
oxk

� TJ 	 r m
qT

� �

� vi

�
� dui
dt

�
o~rrik

oxk
� wi

dJi
dt

: ð19Þ

Since the energy E0 is even under time reversal, the de-
pendence between E0 and Ji in the simplest approxima-
tion has the form

E0 ¼ 1
2
WijJiJj þ 	 	 	 ; Wij ¼ Wji;

where Wij is assumed to be constants and dots denote the

terms of the highest order of infinitesimal in fluxes. In

this case

wi ¼
oE0
oJi

¼ WikJk ð20Þ

and the dissipative function R can be rewritten as

R ¼ �q 	 rT
T

� pik
ovi
oxk

� vi

�
� dui
dt

�
o~rrik

oxk
� JiXi; ð21Þ

where

Xi ¼ T
o

oxi

m
qT

� �
þ Wij

dJj
dt

:

In the framework of the linear theory the positive defi-

niteness of R leads to the linear relationships relating the
dissipative fluxes to the thermodynamic forces. Taking

into account Onsager�s reciprocity relations for the

transport coefficients and time-reversal property of dis-

sipative effects [16], we can write these relationships in

the form

pik ¼ �giklm
ovl
oxm

; ð22Þ

qi ¼ � j0
ik

T 2
oT
oxk

� a0
ikXk � b0

ik

o~rrkj

oxj
; ð23Þ

Ji ¼ � a0
ik

T 2
oT
oxk

� c0ikXk � f0ik
o~rrkj

oxj
; ð24Þ

vi �
dui
dt

¼ � b0
ik

T 2
oT
oxk

� f0ikXk � v0
ik

o~rrkj

oxj
; ð25Þ

where the forth-rank tensor g is related to the effect of
the viscosity and a0

ik ; b
0
ik ; . . . are tensor transport coeffi-

cients.

Let us eliminate the thermodynamic force Xk from

Eqs. (23) and (25). Redenoting the transport coefficients

and introducing the explicit definition of Xk into Eq. (24)

one rewrites the set (23)–(25) for the case of the cubic

lattice as

q ¼ aJ� j
rT
T 2

� br 	 ~rr; ð26Þ

du

dt
¼ v� fJþ b

rT
T 2

þ vr 	 ~rr; ð27Þ

s
dJ

dt
þ J ¼ �cTr m

qT

� �
� x

rT
T 2

� kr 	 ~rr; ð28Þ

where a; b; c; . . . are the scalar transport coefficients. j is
connected with the heat conductivity, s is the relaxation
time of the diffusion flux. The coefficients b, v, k deter-
mine the relation between the dissipative effects and

shear stresses. The remaining coefficients are due to the

processes of diffusion, thermal diffusion and barodiffu-

sion (owing to the pressure dependence of the interstitial

chemical potential m in Eq. (28)).
Thus the complete set of the hydrodynamic equations

of the system under consideration contains now Eqs.

(1)–(4) and Eqs. (27) and (28), where the fluxes pik , q and

the dissipative function R are given by Eqs. (22), (26)

and (21). As it seen from (28) the equation for diffusion

flux is the equation of a relaxation type. At s ¼ 0, i.e. for

slow processes, it determines directly the diffusion flux in

terms of gradients of the basic hydrodynamic variables.

3. Mass transfer in field of fast-moving deformation

disturbance

In this section we consider the diffusion of interstitial

impurities in the field of the fast-moving deformation

disturbance of the type of a shock wave. We assume that

the stepped disturbance (kink), for which the displace-

ment field (along the x-axis) has the form [17,18].

uðx; tÞ ¼ u0 1

�
� tanh

x� Vt
d

�
; ð29Þ

where u0 is the amplitude of the disturbance and d is

the width of the transition region, propagates along the
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x-direction with the constant velocity V compared with

the velocity of the propagation of concentration dis-

turbances in the medium.

At the given motion of the lattice (29) the diffusion

process is largely governed by the set of two equations:

the local conservation law of mass (4) and the relaxation

equation for the diffusion flux (28). Let us now trans-

form the right side of Eq. (28) to the alternative form.

Combining Eqs. (7) and (17) and taking into account

Eq. (20), one obtains

qdl ¼ �S dT þ dp þ mdcþ ~rrij d~uuij þ
W
2
dJ 2; ð30Þ

where W ¼ 1
3
Wii. It follows from Eq. (30) that one can

consider the chemical potential m to be a function of the
independent variables T , p, c, ~uuij, J 2. Omitting essentially
nonlinear terms, note that in the case of the cubic

symmetry a scalar function can depend on the tensor ~uuij
by convolution ~uuii ¼ 0 only. Consequently one can

consider m to be a function of T , p, c only.
The available experimental data indicate that when a

shock wave propagates in a solid the effect of thermo-

diffusion is neglected in comparison with barodiffusion

[2,19]. Here we also assume that the main factor deter-

mining mass transfer in our system is the effect of

barodiffusion. Then omitting the gradient of a tempe-

rature one rewrites Eq. (28) in the more simple form as

s
dJ

dt
þ J ¼ �cT

o

oc
m

qT

� �
rc� c

o

op
m

qT

� �
rp � kr 	 ~rr;

ð31Þ

It follows from Eq. (16) that rik ¼ �pdik þ ~rrik , with

rii ¼ �3p is the elastic stress tensor. In the one-dimen-
sional case one neglects the influence of shear stress on a

diffusion mobility. 1 In addition, we assume that Hook�s
law p ¼ �kU , relating the pressure p with the deforma-
tion U ¼ ou=ox of a material element, is valid. Rede-
noting the constants in Eq. (31) one writes down in the

linear approximation the coupled set of the one-dimen-

sional versions of Eqs. (4) and (31) as

q
oc
ot

¼ � oJ
ox

; ð32Þ

s
oJ
ot

þ J ¼ �qD
oc
ox

þ qG
oU
ox

; ð33Þ

where G > 0 has the meaning of the coefficient of the

barodiffusion and D ¼ cq�1Toðm=qT Þ=oc is the diffusion
constant. In addition, in obtaining of Eqs. (32) and (33)

we have neglected the term v 	 r, appearing in the ma-

terial derivative that is small for fast processes in com-

parison with the time derivative o=ot.
After some algebra, Eqs. (32) and (33) are brought to

the form

oc
ot

þ D
V 2
D

o2c
ot2

� D
o2c
ox2

¼ �G
o2U
ox2

; ð34Þ

oJ
ot

þ D
V 2
D

o2J
ot2

� D
o2J
ox2

¼ qG
o2U
oxot

: ð35Þ

At U ¼ 0 Eq. (34) (as well as Eq. (35)) is known as

the telegrapher equation that, unlike to the classical

diffusion equation, gives rise to the finite speed V 2
D ¼ D=s

of the propagation of concentration perturbations

[10,11].

It is convenient to consider Eqs. (34) and (35) in the

reference frame moving with velocity V together with

the front of the disturbance (29). Passing to the dimen-

sionless coordinate n ¼ ðx� VtÞ=sVD, one has

ðu2 � 1Þ d
2�cc

dn2
� u

d�cc
dn

¼ � d
2U

dn2
; ð36Þ

ðu2 � 1Þ d
2J

dn2
� u

dJ
dn

¼ �u
d2U

dn2
; ð37Þ

where u ¼ V =VD, U ¼ GU=c0D, �cc ¼ ðc� c0Þ=c0, J ¼
J=c0qVD and c0 is the equilibrium interstitial concen-

tration.

Supposing that far from the front of the wave (n ¼ 0)

the medium is not disturbed, we take the boundary

conditions in the form

n ! 
1; �cc ! 0; J ! 0: ð38Þ
The solution of the boundary value problem (36)–

(38) can be presented as follows:

�ccðnÞ ¼

bUðnÞ � ab
R n
�1 e

�aðn�n0ÞUðn0Þdn0; u < 1;

dU
dn

; u ¼ 1;

bUðnÞ þ ab
R1

n e�aðn�n0 ÞUðn0Þdn0; u > 1;

8>>><
>>>:

ð39Þ
Here a ¼ ub, b ¼ 1=ð1� u2Þ and the solution for the

dimensionless flux J follows from (39) as a result of the

replacement of b by a. Eq. (39) is the solution of

boundary value problem for arbitrary deformation dis-

turbance U , vanishing at n ! 
1.

The transition to the local equilibrium theory occurs

if in Eq. (33) one puts formally s ¼ 0. Using the same

dimensionless variables as in Eqs. (36) and (37) one has

in this case the following equations:

d2�ccleq
dn2

� u
d�ccleq
dn

¼ � d
2U

dn2
; ð40Þ

d2J leq
dn2

� u
dJ leq
dn

¼ �u
d2U

dn2
: ð41Þ

1 In the one-dimensional case ~rr is proportional to ou=ox.
Therefore allowance for the term kr 	 ~rr in the right-hand side
of Eq. (31) leads simply to redefinition of the constant G in Eq.

(33).
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The solution of this equations has the standard form

and we shall not give it here.

For the disturbance (29) UðnÞ ¼ �U0=ðcosh2 n=d1Þ,
where U0 is the known constant and d1 ¼ d=sVD, one
rewrites Eq. (39) in the form

�ccð�nnÞ=U0 ¼

� b

cosh2 n
þ ðad1Þb

Z n

�1

e�ad1ðn�nÞ

cosh2 n
dn; u < 1;

2

d1

sinhn

cosh2 n
; u ¼ 1;

� b

cosh2 n
� ðad1Þb

Z 1

n

e�ad1ðn�nÞ

cosh2 n
dn; u > 1;

8>>>>>>>><
>>>>>>>>:

ð42Þ

here n ¼ n=d1. Eq. (42) is the solution of the given

problem at arbitrary values of parameters. Here we are

interested in values of the parameter u ¼ V =VD close to
one for which jaj � 1, jbj � 1. At the same time the

parameter d1, characterizing the width of the transition
region of the disturbance, can take, generally speaking,

any values. In what follows we confine ourselves to two

limiting cases:

(1) The wide transition region, d1 ¼ d=sVD � 1: Figs.

1–3 present the curves for the impurity concentration

�cc=U0 (as well as for the diffusion flux J=uU0) at different

values of the parameter u in the case of the propagating

local compression (U0 > 0). This figures also show the

difference between the local equilibrium and the local

nonequilibrium (presence of the relaxation process in the

medium) theories. In all cases the deformation distur-

bance produces the enhanced impurity concentration

immediately before the front of the deformation wave

(the region of n > 0), lowering it behind the front. In the

region of the of the enhanced concentration the diffusion

flux points in the direction of the disturbance propaga-

tion, while in the region of lowered concentration–in the

opposite direction.

As Figs. 2 and 3 show, at u � 1 the concentration

perturbations are significantly greatly in the local non-

equilibrium medium. In this case the diffusion flux is

nearly twice as large as that for the local equilibrium

system.

(2) The narrow transition region, d1 ¼ d=sVD � 1: In

what follows we consider the special case of d1 ¼ 1=jaj,

Fig. 1. Normalized interstitial concentration �cc=U0 (normalized

dimensionless diffusion flux J=uU0) vs. dimensionless coordi-

nate n at u ¼ 0:5, d1 ¼ 1 and U0 > 0. Local nonequilibrium

system––curve 1; local equilibrium system––curve 2.

Fig. 2. Normalized interstitial concentration �cc=U0 (normalized

dimensionless diffusion flux J=uU0) vs. dimensionless coordi-

nate n at u ¼ 0:95, d1 ¼ 1 and U0 > 0. Local nonequilibrium

system––curve 1; local equilibrium system––curve 2.

Fig. 3. Normalized interstitial concentration �cc=U0 (normalized

dimensionless diffusion flux J=uU0) vs. dimensionless coordi-

nate n at u ¼ 1:05, d1 ¼ 1 and U0 > 0. Local nonequilibrium

system––curve 1; local equilibrium system––curve 2.
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jaj � 1. Figs. 4 and 5 demonstrate a pronounced dif-

ference between two approaches. The ejection of the

major number of interstitials into the region before the

front of the wave is observed in the absence of a local

equilibrium in the medium. In the latter case the impu-

rity concentration in the indicated region is nearly by an

order greater than the local equilibrium concentration

that does not change practically with the rising of u.
Figs. 4 and 5 also show the considerable deviation for

diffusion fluxes demonstrating the acceleration of the

mass transfer under local nonequilibrium conditions.

Note that at u > 1 in the region of the front the diffusion

fluxes referring to the different nonequilibrium states of

the medium point in complete opposite directions. The

difference between the local nonequilibrium curves at

different magnitudes u are shown in Fig. 6.

The reason of the enhanced impurity concentration

before the front in the local nonequilibrium system is

that when the velocity of the deformation wave is near

to VD, the concentration disturbances have no time to
propagate on large distances from the front. This has the

effect of accumulation of interstitials in the indicated

region. Here is a complete analogy with the task about

the motion of a thermal source in a relaxating medium

[20].

It should be noted that in the case of the local tension

(U0 < 0) the concentration peaks will form behind the

front of the wave (n < 0) by the moving particles from

the region n > 0.

4. Summary and conclusion

In this work we have presented the investigation of

mass transfer in the field of the fast-moving deformation

disturbance of the type of a shock wave, propagating in

the infinite lattice with interstitial impurities. The re-

search is motivated by experiments on the exposure of

solid to dynamical external loads [1–9].

For the description of fast hydrodynamical processes

the extending of the set of the conventional variables,

Fig. 4. Normalized dimensionless diffusion flux J=U0 (nor-

malized interstitial concentration u�cc=U0) vs. dimensionless

coordinate n at u ¼ 0:95, d1 ¼ 1=jaj and U0 > 0. Local non-

equilibrium system––curve 1; local equilibrium––curve 2.

Fig. 5. Normalized dimensionless diffusion flux J=U0 (nor-

malized interstitial concentration u�cc=U0) vs. dimensionless

coordinate n at u ¼ 1:05, d1 ¼ 1=jaj and U0 > 0. Local non-

equilibrium system––curve 1; local equilibrium––curve 2.

Fig. 6. Normalized dimensionless diffusion flux J=U0 (nor-

malized interstitial concentration u�cc=U0) vs. dimensionless co-

ordinate n for the case of local nonequilibrium system at

d1 ¼ 1=jaj, U0 > 0 and u ¼ 0:95 (curve 1), u ¼ 1:05 (curve 2).
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characterizing the nonequilibrium state of a solid is

needed. In the given model the only extra variable is

the diffusion flux, the relaxation time of which is as-

sumed to be comparable to the timescale of the pro-

cess under consideration. For the selected variables the

set of the coupled hydrodynamical equations has been

derived.

Having assumed that the main factor impacting on

mass transfer in our case is the effect of barodiffusion

[2,19], we reduce the diffusion task to the investigation of

the set of two linear, one-dimensional equations. These

are the equation for the interstitial concentration (36)

and the relaxation equation for the diffusion flux (37).

The solution of this set is defined by two dimensionless

parameters u ¼ V =VD and d1 ¼ d=sVD. At the different
magnitudes u � 1 we have considered two special cases

d1 ’ 1 and d1 � 1.

Figs. 1–5 show that the occurrence of the relax-

ation process in the medium leads to the significant de-

viation of the concentration profiles and the diffusion

fluxes from the local equilibrium diffusion data. The

ejection of interstitials into the region before the

front enables to speak about the effect of the entrain-

ment of impurity particles by the wave. This effect takes

place in the local equilibrium system also (see [21] as

well), however at d1 � 1 to a largest measure it is dis-

played in the local nonequilibrium conditions (Figs. 4

and 5).

In the case of the local tension (U0 < 0; the mirror

reflection of the plots 1–6 relative to axis n) the con-
centration peaks will form beyond the front of the wave

by a ‘‘suction’’ of particles from the range before the

front into the extended range.

The case of d1 � 1 (d � sVD) corresponds to the

smooth enough behavior of the deformation distur-

bance. Here, in the region of the front, the local non-

equilibrium diffusion flux is nearly twice as large as that

for the local equilibrium system. The case of d1 � 1

(d � sVD) corresponds to the sharp deformation varia-
tions. From Figs. 4 and 5 it is seen that in this case one

can speak about the significant acceleration of the mass

transfer in the local nonequilibrium system. The all ef-

fects noted above are by an order less in the local

equilibrium system.

Thus our investigation has shown that at the taken

magnitudes of the parameters of the model an enhanced

mass transfer takes place in local nonequilibrium system

in comparison with the same process considered under

the local equilibrium conditions.

Note in conclusion that the results presented here

have been obtained within the scope of the linear theory.

The set of the hydrodynamical equations derived in

Section 2 can form the basis for the investigation of

nonlinear effects.
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